Overall Statistics
Total Orders
14894
Average Win
0.77%
Average Loss
-0.80%
Compounding Annual Return
75.490%
Drawdown
33.300%
Expectancy
0.679
Start Equity
100000
End Equity
541006.43
Net Profit
441.006%
Sharpe Ratio
1.538
Sortino Ratio
1.576
Probabilistic Sharpe Ratio
70.334%
Loss Rate
14%
Win Rate
86%
Profit-Loss Ratio
0.95
Alpha
0.467
Beta
0.914
Annual Standard Deviation
0.36
Annual Variance
0.13
Information Ratio
1.451
Tracking Error
0.316
Treynor Ratio
0.607
Total Fees
$1253.49
Estimated Strategy Capacity
$130000000.00
Lowest Capacity Asset
GOOG T1AZ164W5VTX
Portfolio Turnover
5.85%
from AlgorithmImports import *

class EMAMovingAverageStrategy(QCAlgorithm):
    def Initialize(self):
        self.SetStartDate(2018, 1, 1)
        self.SetEndDate(2021, 1, 1)
        self.SetCash(100000)

        # Add all symbols in S&P 500
        self.symbols = ["AAPL", "MSFT", "GOOGL", "AMZN", "FB", "JPM", "V", "PG", "DIS", "HD",  # Add more symbols as needed
                        "VZ", "KO", "INTC", "NFLX", "TSLA", "NVDA", "UNH", "PYPL", "PEP", "ABT", 
                        "BAC", "CMCSA", "ADBE", "XOM", "MRK", "PFE", "WMT", "NKE", "CSCO", "MCD", 
                        "MA", "ABNB", "CRM", "AVGO", "T", "ORCL", "ACN", "CVX", "LMT", "MDT",
                        "IBM", "TXN", "QCOM", "LOW", "AMGN", "SBUX", "TMO", "COST", "GILD", "UPS"]
        
        # Initialize indicators and rolling windows for each symbol
        self.indicators = {}
        self.ema60_tracks = {}

        for symbol in self.symbols:
            equity = self.AddEquity(symbol, Resolution.Daily)
            self.indicators[symbol] = {
                "ema9": self.EMA(equity.Symbol, 9, Resolution.Daily),
                "ema15": self.EMA(equity.Symbol, 15, Resolution.Daily),
                "ema65": self.EMA(equity.Symbol, 65, Resolution.Daily),
                "ema200": self.EMA(equity.Symbol, 150, Resolution.Daily),
                "ema35": self.EMA(equity.Symbol, 35 , Resolution.Daily),
                "rsi": self.RSI(equity.Symbol, 14, Resolution.Daily)
            }
            self.ema60_tracks[symbol] = RollingWindow[IndicatorDataPoint](60)
        
        self.SetWarmUp(200)

    def OnData(self, data):
        if self.IsWarmingUp:
            return

        for symbol in self.symbols:
            if data.ContainsKey(symbol):
                current_data = data[symbol]
                if current_data:
                    self.ema60_tracks[symbol].Add(self.indicators[symbol]["ema35"].Current)
        
        for symbol in self.symbols:
            if self.ema60_tracks[symbol].IsReady:
                self.TradeSymbol(symbol)

    def TradeSymbol(self, symbol):
        indicators = self.indicators[symbol]
        ema60_track = self.ema60_tracks[symbol]  # Corrected attribute name

        if self.IsBuyCondition(indicators, ema60_track):  # Pass ema60_track to IsBuyCondition
            self.SetHoldings(symbol, 1)
        elif self.IsSellCondition(indicators, ema60_track):  # Pass ema60_track to IsSellCondition
           self.Liquidate(symbol)
        elif self.Portfolio[symbol].Invested:
            if self.IsExitBuyCondition(indicators):
                self.Liquidate(symbol)
            elif self.IsExitSellCondition(indicators):
                self.Liquidate(symbol)
            
                 

    def IsBuyCondition(self, indicators, ema60_track):  # Added ema60_track parameter
        ema_condition = (indicators["ema9"].Current.Value > indicators["ema15"].Current.Value > indicators["ema65"].Current.Value > indicators["ema200"].Current.Value)
        ema35_condition = all(x.Value > 60 for x in ema60_track)
        return ema_condition and ema35_condition

    def IsSellCondition(self, indicators, ema60_track):  # Added ema60_track parameter
        ema_condition = (indicators["ema9"].Current.Value < indicators["ema15"].Current.Value < indicators["ema65"].Current.Value < indicators["ema200"].Current.Value)
        ema35_condition = all(x.Value < 60 for x in ema60_track)
        return ema_condition and ema35_condition

    def IsExitBuyCondition(self, indicators):
        ema_cross_condition = (indicators["ema9"].Current.Value < indicators["ema65"].Current.Value or indicators["ema15"].Current.Value < indicators["ema65"].Current.Value)
        rsi_condition = indicators["rsi"].Current.Value < 40
        return ema_cross_condition and rsi_condition

    def IsExitSellCondition(self, indicators):
        ema_cross_condition = (indicators["ema9"].Current.Value > indicators["ema65"].Current.Value or indicators["ema15"].Current.Value > indicators["ema65"].Current.Value)
        rsi_condition = indicators["rsi"].Current.Value > 60
        return ema_cross_condition and rsi_condition