Overall Statistics |
Total Trades 1741 Average Win 0.21% Average Loss -0.19% Compounding Annual Return 29.137% Drawdown 10.600% Expectancy 0.095 Net Profit 14.554% Sharpe Ratio 1.201 Probabilistic Sharpe Ratio 53.269% Loss Rate 49% Win Rate 51% Profit-Loss Ratio 1.15 Alpha 0.219 Beta -0.115 Annual Standard Deviation 0.176 Annual Variance 0.031 Information Ratio 0.328 Tracking Error 0.444 Treynor Ratio -1.845 Total Fees $374.20 |
from datetime import timedelta, datetime class SMAPairsTrading(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 1) self.SetEndDate(2020, 7, 31) self.SetCash(1000) self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Margin) symbols = [Symbol.Create("BTCUSD", SecurityType.Crypto, Market.Bitfinex ), Symbol.Create("ETHUSD", SecurityType.Crypto, Market.Bitfinex)] self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) self.UniverseSettings.Resolution = Resolution.Hour self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw self.AddAlpha(PairsTradingAlphaModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.SetExecution(ImmediateExecutionModel()) class PairsTradingAlphaModel(AlphaModel): def __init__(self): self.pair = [ ] self.spreadMean = SimpleMovingAverage(500) self.spreadStd = StandardDeviation(500) self.period = timedelta(minutes=30) def Update(self, algorithm, data): spread = self.pair[1].Price - self.pair[0].Price self.spreadMean.Update(algorithm.Time, spread) self.spreadStd.Update(algorithm.Time, spread) upperthreshold = self.spreadMean.Current.Value + self.spreadStd.Current.Value lowerthreshold = self.spreadMean.Current.Value - self.spreadStd.Current.Value if spread > upperthreshold: return Insight.Group( [ Insight.Price(self.pair[0].Symbol, self.period, InsightDirection.Up), Insight.Price(self.pair[1].Symbol, self.period, InsightDirection.Down) ]) if spread < lowerthreshold: return Insight.Group( [ Insight.Price(self.pair[0].Symbol, self.period, InsightDirection.Down), Insight.Price(self.pair[1].Symbol, self.period, InsightDirection.Up) ]) return [] def OnSecuritiesChanged(self, algorithm, changes): self.pair = [x for x in changes.AddedSecurities] #1. Call for 500 bars of history data for each symbol in the pair and save to the variable history history = algorithm.History([x.Symbol for x in self.pair], 500) #2. Unstack the Pandas data frame to reduce it to the history close price history = history.close.unstack(level=0) #3. Iterate through the history tuple and update the mean and standard deviation with historical data for tuple in history.itertuples(): self.spreadMean.Update(tuple[0], tuple[2]-tuple[1]) self.spreadStd.Update(tuple[0], tuple[2]-tuple[1])