Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 1.050% Drawdown 3.000% Expectancy 0 Net Profit 3.207% Sharpe Ratio 0.596 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.018 Beta -0.561 Annual Standard Deviation 0.015 Annual Variance 0 Information Ratio -0.531 Tracking Error 0.015 Treynor Ratio -0.016 Total Fees $1.00 |
from System.Collections.Generic import List from QuantConnect.Data.UniverseSelection import * import operator from math import ceil,floor import numpy as np import pandas as pd from scipy import stats class AltmanZScoreAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2016,1,1) #Set Start Date #self.SetEndDate(2017,05,02) #Set End Date self.SetCash(100000) #Set Strategy Cash self.flag1 = 1 self.flag2 = 0 self.flag3 = 0 self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.UniverseSettings.Resolution = Resolution.Daily self.UniverseSettings.Leverage = 1 self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.AddEquity("SPY") self.__numberOfSymbols = 100 self.__numberOfSymbolsFine = 10 self._changes = None self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.Rebalancing)) self.SetWarmUp(200) self.splotName = 'Strategy Info' sPlot = Chart(self.splotName) sPlot.AddSeries(Series('Leverage', SeriesType.Line, 0)) self.AddChart(sPlot) def CoarseSelectionFunction(self, coarse): if self.flag1: CoarseWithFundamental = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)] sortedByDollarVolume = sorted(CoarseWithFundamental, key=lambda x: x.DollarVolume, reverse=True) top = sortedByDollarVolume[:self.__numberOfSymbols] self.prices = {} for x in top: self.prices[x.Symbol] = x.Price self.Log("Found " + str(len(top)) + "for course selection universe") return [i.Symbol for i in top] else: self.Log("Got None for course selection universe") return [] def FineSelectionFunction(self, fine): if self.flag1: self.flag1 = 0 self.flag2 = 1 filtered_fine = [x for x in fine if x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths and x.FinancialStatements.BalanceSheet.TotalLiabilitiesAsReported.TwelveMonths and x.FinancialStatements.BalanceSheet.WorkingCapital.TwelveMonths and x.FinancialStatements.BalanceSheet.RetainedEarnings.TwelveMonths and x.FinancialStatements.IncomeStatement.EBIT.TwelveMonths and x.FinancialStatements.IncomeStatement.TotalRevenue.TwelveMonths and x.EarningReports.BasicAverageShares.TwelveMonths] sortedByfactor1 = [x for x in filtered_fine if ZScore(x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths, x.FinancialStatements.BalanceSheet.TotalLiabilitiesAsReported.TwelveMonths, x.FinancialStatements.BalanceSheet.WorkingCapital.TwelveMonths, x.FinancialStatements.BalanceSheet.RetainedEarnings.TwelveMonths, x.FinancialStatements.IncomeStatement.EBIT.TwelveMonths, x.FinancialStatements.IncomeStatement.TotalRevenue.TwelveMonths, x.EarningReports.BasicAverageShares.TwelveMonths,self.prices[x.Symbol]).ObjectiveScore() > 1.81] filtered_finer = [x for x in sortedByfactor1 if x.ValuationRatios.EVToEBITDA] sortedByfactor2 = sorted(filtered_finer, key=lambda x: x.ValuationRatios.EVToEBITDA, reverse=False) topFine = sortedByfactor2[:self.__numberOfSymbolsFine] self.flag3 = self.flag3 + 1 self.Log("Found " + str(len(topFine)) + "for fine selection universe") return [i.Symbol for i in topFine] else: self.Log("Found None for fine selection universe") return [] def OnData(self, data): if self.flag3 > 0: if self._changes is not None and self.flag2 == 1: self.flag2 = 0 for security in self._changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) for security in self._changes.AddedSecurities: self.SetHoldings(security.Symbol, 1./float(self.__numberOfSymbolsFine)) self._changes = None; # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): self.Log("Changes in universe!") self._changes = changes def Rebalancing(self): self.flag1 += 1 self.account_leverage = self.Portfolio.TotalAbsoluteHoldingsCost / self.Portfolio.TotalPortfolioValue self.Plot(self.splotName,'Leverage', float(self.account_leverage)) class ZScore(object): def __init__(self, totalassets, totalliabilities, workingcapital, retainedearnings, ebit, totalrevenue, shares, price): self.totalassets = float(totalassets) self.totalliabilities = float(totalliabilities) self.workingcapital = float(workingcapital) self.retainedearnings = float(retainedearnings) self.ebit = float(ebit) self.totalrevenue = float(totalrevenue) self.shares = float(shares) self.price = float(price) def ObjectiveScore(self): X1 = 1.2 * (self.workingcapital / self.totalassets) X2 = 1.4 * (self.retainedearnings / self.totalassets) X3 = 3.3 * (self.ebit / self.totalassets) X4 = 0.6 * ((self.shares * self.price) / self.totalliabilities) X5 = 1.0 * (self.totalrevenue / self.totalassets) return X1 + X2 + X3 + X4 + X5