Overall Statistics |
Total Trades 83 Average Win 8.10% Average Loss -3.95% Compounding Annual Return 11.795% Drawdown 24.900% Expectancy 0.862 Net Profit 241.235% Sharpe Ratio 0.737 Loss Rate 39% Win Rate 61% Profit-Loss Ratio 2.05 Alpha 0.1 Beta 1.185 Annual Standard Deviation 0.167 Annual Variance 0.028 Information Ratio 0.62 Tracking Error 0.167 Treynor Ratio 0.104 Total Fees $1690.68 |
# https://quantpedia.com/Screener/Details/14 class DualMomentum(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) # Set Start Date self.SetEndDate(2019, 1, 1) # Set Start Date self.SetCash(100000) # Set Strategy Cash self.us = self.AddEquity("SPY", Resolution.Daily).Symbol self.worldExUS = self.AddEquity("VEU", Resolution.Daily).Symbol self.tbill = self.AddEquity("SHV", Resolution.Daily).Symbol #SHY self.agg = self.AddEquity("BND", Resolution.Daily).Symbol # AGG self.leverage = 1.3 self.Schedule.On(self.DateRules.MonthStart("SPY"),self.TimeRules.AfterMarketOpen("SPY"), self.rebalance) self.currentLong = self.us self.returnWindowLength = 100 def Returns(self, symbol, period): closingBars = self.History(symbol, TimeSpan.FromDays(period),Resolution.Daily).close return (closingBars[-1] - closingBars[0])/closingBars[-1] def rebalance(self): if self.Returns(self.us,self.returnWindowLength) < self.Returns(self.tbill,self.returnWindowLength): self.currentLong = self.agg elif self.Returns(self.us,self.returnWindowLength) > self.Returns(self.worldExUS,self.returnWindowLength): self.currentLong=self.us else: self.currentLong = self.worldExUS stocksInvested = [x.Key for x in self.Portfolio if x.Value.Invested] if not stocksInvested: self.SetHoldings(self.currentLong, self.leverage) elif self.currentLong != stocksInvested[0]: self.SetHoldings(self.currentLong, self.leverage, True) def OnData(self, data): pass