Overall Statistics |
Total Trades 56 Average Win 1.04% Average Loss -1.46% Compounding Annual Return 9091.787% Drawdown 4.500% Expectancy 0.225 Net Profit 9.057% Sharpe Ratio 64.55 Probabilistic Sharpe Ratio 99.649% Loss Rate 29% Win Rate 71% Profit-Loss Ratio 0.71 Alpha 28.456 Beta -2.115 Annual Standard Deviation 0.422 Annual Variance 0.178 Information Ratio 51.174 Tracking Error 0.522 Treynor Ratio -12.893 Total Fees $6690.28 |
from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity class TransdimensionalParticleThrustAssembly(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 7, 1) # Set Start Date self.SetEndDate(2020, 7, 7) # Set End Date self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", Resolution.Minute) #.SetDataNormalizationMode(DataNormalizationMode.SplitAdjusted) # Add SPY to set scheduled events self.UniverseSettings.Resolution = Resolution.Minute # Setting Universe: Daily, Minute or Second self.SetSecurityInitializer(self.CustomSecurityInitializer) self.UniverseSettings.FillForward = False self.UniverseSettings.ExtendedMarketHours = True # self.UniverseSettings.Leverage = 1.0 self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.CoarseSelectionFunction, self.FineSelectionFunction, None, None)) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.2)) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.At(9, 0), self.Rebalance) # Scheduled Events self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.At(9, 1), self.Rebalance_Second) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 30), self.LiquidatePositions) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 1), self.OnMarketClose) self.previous_d_close = {} # Dictionary to keep track of previous close for each symbol self.filtered = [] self.donottrade = [Symbol.Create(ticker, SecurityType.Equity, Market.USA) for ticker in []] #, 'MSFT']] self.cashused = 10000 def OnData(self, data): # OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. pass def CoarseSelectionFunction(self, coarse): # Picks up securities Universe. Constructed at midnight of night before. return [x.Symbol for x in coarse if 5 > x.Price] def FineSelectionFunction(self, fine): # Picks up securities from Coarse > Universe. Constructed at midnight of night before. return [x.Symbol for x in fine if x.MarketCap < 5000000000] def OnSecuritiesChanged(self, changes): # Picks up securities from the Fine > Coarse > Universe. Constructed at midnight of night before. for security in changes.AddedSecurities: # AddedSecurities are those populated by Fine > Coarse > Universe, for security in self.ActiveSecurities.Values if security.Symbol in self.donottrade: continue symbol = security.Symbol if symbol not in self.previous_d_close: # Make a history call for symbol to get last closing price history = self.History(symbol, 1, Resolution.Daily) #, DataNormalizationMode.SplitAdjusted) if not history.empty: history = history.close.unstack(0)[symbol] if not history.empty: self.previous_d_close[symbol] = history[0] for security in changes.RemovedSecurities: # Remove symbols from previous close as they are removed from the universe self.previous_d_close.pop(security.Symbol, None) def Rebalance(self): percent_change = {} # Dictionary to keep track of percent change from last close price_restriction = {} for symbol, previous_d_close in self.previous_d_close.items(): # Populate Dictionary if self.CurrentSlice.Bars.ContainsKey(symbol): last_price = self.CurrentSlice.Bars[symbol].Close change = last_price/previous_d_close percent_change[symbol] = change price_restriction[symbol] = last_price symbols = list(percent_change.keys()) # Symbols under consideration sorted_symbols = sorted([x for x in symbols if percent_change[x] > 1.0 and price_restriction[x] > 2], key=lambda x : percent_change[x], reverse = True) # True is Highest first self.filtered = sorted_symbols[:10] # Get top xx symbols def Rebalance_Second(self): price_above_ma = {} price_below_max = {} percent_change = {} # Dictionary to keep track of percent change from last close selected_symbols = [] for symbol, previous_d_close in self.previous_d_close.items(): if symbol in self.filtered: if self.CurrentSlice.Bars.ContainsKey(symbol): history_data_max = self.History(symbol, 60, Resolution.Daily).high.unstack(level=0)[symbol] history_data_close = self.History(symbol, 60, Resolution.Daily).close.unstack(level=0)[symbol] forty_d_max = history_data_max[-60:-2].max() forty_d_avg = history_data_close[-60:-2].mean() price_above_ma[symbol] = forty_d_max / forty_d_avg current_price = self.CurrentSlice.Bars[symbol].Close price_below_max[symbol] = current_price / forty_d_max percent_change[symbol] = current_price/previous_d_close symbols = list(price_above_ma.keys()) selected_symbols = sorted([x for x in symbols if price_above_ma[x] > 0.8 and price_below_max[x] < 5], key=lambda x : percent_change[x], reverse = True)#[:1] for symbol in selected_symbols: price = self.Securities[symbol].Price self.LimitOrder(symbol, -self.cashused/price, (price * 0.99)) #self.MarketOrder(symbol, -self.cashused/price) #self.StopMarketOrder(symbol, -self.cashused/price, price*1.2) # Stop loss 20% higher than purchase price def LiquidatePositions(self): self.Liquidate() # Liquidate portfolio def CustomSecurityInitializer(self, security): security.SetDataNormalizationMode(DataNormalizationMode.SplitAdjusted) security.SetFeeModel(CustomFeeModel()) #security.SetSlippageModel(CustomSlippageModel(self)) def OnMarketClose(self): for symbol in self.previous_d_close: # Store new previous close values if self.CurrentSlice.ContainsKey(symbol): self.previous_d_close[symbol] = self.CurrentSlice[symbol].Close class CustomFeeModel(): # Slippage and Fees together def GetOrderFee(self, parameters): loss_total = (parameters.Security.Price * 0.011 * parameters.Order.AbsoluteQuantity) + (parameters.Order.AbsoluteQuantity * 0.005) fee = max(1, loss_total) return OrderFee(CashAmount(fee, 'USD')) #class CustomSlippageModel: # def __init__(self, algorithm): # self.algorithm = algorithm # def GetSlippageApproximation(self, asset, order): # custom slippage math # slippage = np.float(asset.Price) * 0.02 #asset.Price * d.Decimal(0.0001 * np.log10(2*float(order.AbsoluteQuantity))) # return slippage