Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.859 Tracking Error 0.23 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
pass class MyDonchianChannelAlphaModel(QCAlgorithm): def __init__(self, upperBand = 55, lowerBand = 55, resolution = Resolution.Daily): self.upperBand = upperBand self.lowerBand = lowerBand self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand) self.symbolDataBySymbol = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, upperBand, lowerBand, resolutionString) def Update(self, algorithm, data): insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.donchian.IsReady: if symbolData.PriceOverUpper: if symbolData.Close > symbolData.donchian.UpperBand.Current.Value: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up)) elif symbolData.PriceUnderLower: if symbolData.Close < symbolData.donchian.LowerBand.Current.Value: insights.append(Insight.Price(symbolData.symbol, self.predictionInterval, InsightDirection.Down)) symbolData.PriceOverUpper = symbolData.Close > symbolData.donchian.UpperBand.Current.Value symbolData.PriceUnderLower = symbolData.Close < symbolData.donchian.LowerBand.Current.Value return insights def OnSecuritiesChanged(self, algorithm, changes): for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: symbolData = self.SymbolData(added) symbolData.donchian = algorithm.DCH(added.Symbol, self.upperBand, self.lowerBand, self.resolution) self.SetWarmup(55) self.symbolDataBySymbol[added.Symbol] = symbolData else: symbolData.donchian.Reset() class SymbolData: def __init__(self, security): self.Bars = None self.Security = security self.Symbol = security.Symbol self.Close = None self.donchian = None self.PriceOverUpper = False self.PriceUnderLower = False #rolling windows!!
pass class Donchian3(AlphaModel): def __init__(self, upperBand = 55, lowerBand = 55, resolution = Resolution.Daily): self.upperBand = upperBand self.lowerBand = lowerBand self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand) self.symbolDataBySymbol = {} self.closeWindow = {} self.donchianWindow = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, upperBand, lowerBand, resolutionString) def Update(self, algorithm, data): # Updates this alpha model with the latest data from the algorithm. # This is called each time the algorithm receives data for subscribed securities # Generate insights on the securities in the universe. insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.closeWindow[0] > symbolData.donchianWindow.UpperBand[1]: insights.append(Insight.Price(symbolData.Symbol, self.predicationInterval, InsightDirection.Up)) elif symbolData.closeWindow[0] < symbolData.donchianWindow.LowerBand[1]: insights.append(Insight.Price(symbolData.Symbol, self.predicationInterval, InsightDirection.Down)) return insights def OnSecuritiesChanged(self, algorithm, changes): # Handle security changes in from your universe model. for added in changes.Securities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is none: symbolData = SymbolData(added) self.closeWindow.Add(data[added.Symbol]) self.symbolDataBySymbol[added.Symbol] = symbolData else: symbolData.donchian.Reset() class SymbolData: def __init__(self, algorithm, security): self.algorithm = algorithm self.Security = security self.Symbol = security.Symbol self.donchian = algorithm.DCH(added.Symbol, self.upperBand, self.lowerBand, self.resolution) self.donchianWindow = RollingWindow[IndicatorDataPoint](2) self.donchian.Updated += self.OnDonchianUpdated self.consolidator = TradeBarConsolidator(resolution.Daily) #self.closeWindow = RollingWindow[TradeBar](2) #self.Consolidate(self.symbol, Resolution.Daily, lambda x: self.closewindow.Add(x)) #self.closeWindow.Add(Data[self.symbol]) #init tradebars here for securities also def OnDonchianUpdated(self, sender, updated): if self.donchian.IsReady: self.donchianWindow.Add(updated) #def OnCloseWindowUpdated(self, sender, updated): #if self.closeWindow.IsReady: #self.closeWindow.Add(updated) @property def IsReady(self): return self.donchian.IsReady and self.donchianWindow.IsReady
pass
class DrawdownStops(RiskManagementModel): '''Provides an implementation of IRiskManagementModel that limits the drawdown per holding to the specified percentage''' def __init__(self, maximumDrawdownPercent = 0.05): '''Initializes a new instance of the MaximumDrawdownPercentPerSecurity class Args: maximumDrawdownPercent: The maximum percentage drawdown allowed for any single security holding''' self.maximumDrawdownPercent = -abs(maximumDrawdownPercent) def ManageRisk(self, algorithm, targets): '''Manages the algorithm's risk at each time step Args: algorithm: The algorithm instance targets: The current portfolio targets to be assessed for risk''' targets = [] for kvp in algorithm.Securities: security = kvp.Value if not security.Invested: continue pnl = security.Holdings.UnrealizedProfitPercent if pnl < self.maximumDrawdownPercent: # liquidate targets.append(PortfolioTarget(security.Symbol, 0)) return targets
pass
class LiquidUniverseSelection(QCAlgorithm): def __init__(self, algorithm): self.algorithm = algorithm self.securities = [] def SelectCoarse(self, coarse): # sortedByDollarVolume = sorted(coarse, key=lambda c: c.DollarVolume, reverse=True) coarseSelection = [x for x in coarse if x.HasFundamentalData and x.DollarVolume > 5000000] universe = [x.Symbol for x in coarseSelection] #self.algorithm.Securities = universe #self.Log(universe) return universe #def OnData(self, data): #if self._changes is None: return #for security in self._changes.RemovedSecurities: #if security.Invested: #self.securities.remove(security.Symbol) #for security in self._changes.AddedSecurities: #pass #self._changed = None def OnSecuritiesChanged(self, algorithm, changes): for added in changes.AddedSecurities: self.securities.append(added) for removed in changes.RemovedSecurities: if removed in self.securities: self.securities.remove(removed) for invested in self.securities.Invested: self.securities.remove(invested) #self.Log(f"OnSecuritiesChanged({self.UtcTime}):: {changes}")
class InsightWeightingPortfolioConstructionModel(EqualWeightingPortfolioConstructionModel): '''Provides an implementation of IPortfolioConstructionModel that generates percent targets based on the Insight.Weight. The target percent holdings of each Symbol is given by the Insight.Weight from the last active Insight for that symbol. For insights of direction InsightDirection.Up, long targets are returned and for insights of direction InsightDirection.Down, short targets are returned. If the sum of all the last active Insight per symbol is bigger than 1, it will factor down each target percent holdings proportionally so the sum is 1. It will ignore Insight that have no Insight.Weight value.''' def __init__(self, rebalance = Resolution.Daily, portfolioBias = PortfolioBias.LongShort): '''Initialize a new instance of InsightWeightingPortfolioConstructionModel Args: rebalance: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function. If None will be ignored. The function returns the next expected rebalance time for a given algorithm UTC DateTime. The function returns null if unknown, in which case the function will be called again in the next loop. Returning current time will trigger rebalance. portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long)''' self.rebalance = rebalance self.portfolioBias = portfolioBias def ShouldCreateTargetForInsight(self, insight): '''Method that will determine if the portfolio construction model should create a target for this insight Args: insight: The insight to create a target for''' # Ignore insights that don't have Weight value return insight.Weight is not None def DetermineTargetPercent(self, activeInsights): '''Will determine the target percent for each insight Args: activeInsights: The active insights to generate a target for''' result = {} # We will adjust weights proportionally in case the sum is > 1 so it sums to 1. weightSums = sum(self.GetValue(insight) for insight in activeInsights if self.RespectPortfolioBias(insight)) weightFactor = 1.0 if weightSums > 1: weightFactor = 1 / weightSums for insight in activeInsights: result[insight] = (insight.Direction if self.RespectPortfolioBias(insight) else InsightDirection.Flat) * self.GetValue(insight) * weightFactor return result def GetValue(self, insight): '''Method that will determine which member will be used to compute the weights and gets its value Args: insight: The insight to create a target for Returns: The value of the selected insight member''' return insight.Weight
pass class DonchianChannelAlpha(AlphaModel): def __init__(self, upperBand = 55, lowerBand = 55, resolution = Resolution.Daily): self.upperBand = upperBand self.lowerBand = lowerBand self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand) self.symbolDataBySymbol = {} self.closeWindow = None resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, upperBand, lowerBand, resolutionString) def Update(self, algorithm, data): insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): #this is all wrong, you fugged up monkey, its backwars XDDDDD previousClose = symbolData.closeWindow[1] if previousClose > symbolData.donchian.UpperBand.Current.Value: insights.append(Insight.Price(symbolData.Symbol, self, predictionInterval, InsightDirection.Up)) elif previousClose < symbolData.donchian.LowerBand.Current.Value: insights.append(Insight.Price(symbolData.Symbol, self, predictionInterval, InsightDirection.Down)) return insights def OnSecuritiesChanged(self, algorithm, changes): for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: self.donchian = algorithm.DCH(added.Symbol, self.upperBand, self.lowerBand, self.resolution) self.donchianWindow = RollingWindow[IndicatorDataPoint](2) self.closeWindow = RollingWindow[float](2) self.consolidator = TradeBarConsolidator(2) self.consolidator.DataConsolidated += self.CloseUpdated algorithm.SubscriptionManager.AddConsolidator(Symbol, self.consolidator) symbolData = SymbolData(added) self.symbolDataBySymbol[added.Symbol] = symbolData else: symbolData.donchian.Reset() symbolData.Close.Reset() def DonchianUpdated(self, sender, updated): if self.donchian.IsReady: self.donchianWindow.Add(updated) def CloseUpdated(self, sender, bar): self.closeWindow.Add(bar.Close) @property def IsReady(self): return self.donchian.IsReady and self.closeWindowIsReady class SymbolData: def __init__(self, security): self.Security = security self.Symbol = security.Symbol self.algorithm = algorithm self.donchian = algorithm.DCH(symbol,) self.donchianWindow = None self.closeWindow = None self.consolidator = None
class MaximumSectorExposureRiskManagementModel(RiskManagementModel): '''Provides an implementation of IRiskManagementModel that that limits the sector exposure to the specified percentage''' def __init__(self, maximumSectorExposure = 0.20): '''Initializes a new instance of the MaximumSectorExposureRiskManagementModel class Args: maximumDrawdownPercent: The maximum exposure for any sector, defaults to 20% sector exposure.''' if maximumSectorExposure <= 0: raise ValueError('MaximumSectorExposureRiskManagementModel: the maximum sector exposure cannot be a non-positive value.') self.maximumSectorExposure = maximumSectorExposure self.targetsCollection = PortfolioTargetCollection() def ManageRisk(self, algorithm, targets): '''Manages the algorithm's risk at each time step Args: algorithm: The algorithm instance''' maximumSectorExposureValue = float(algorithm.Portfolio.TotalPortfolioValue) * self.maximumSectorExposure self.targetsCollection.AddRange(targets) risk_targets = list() # Group the securities by their sector filtered = list(filter(lambda x: x.Value.Fundamentals is not None and x.Value.Fundamentals.HasFundamentalData, algorithm.UniverseManager.ActiveSecurities)) filtered.sort(key = lambda x: x.Value.Fundamentals.CompanyReference.IndustryTemplateCode) groupBySector = groupby(filtered, lambda x: x.Value.Fundamentals.CompanyReference.IndustryTemplateCode) for code, securities in groupBySector: # Compute the sector absolute holdings value # If the construction model has created a target, we consider that # value to calculate the security absolute holding value quantities = {} sectorAbsoluteHoldingsValue = 0 for security in securities: symbol = security.Value.Symbol quantities[symbol] = security.Value.Holdings.Quantity absoluteHoldingsValue = security.Value.Holdings.AbsoluteHoldingsValue if self.targetsCollection.ContainsKey(symbol): quantities[symbol] = self.targetsCollection[symbol].Quantity absoluteHoldingsValue = (security.Value.Price * abs(quantities[symbol]) * security.Value.SymbolProperties.ContractMultiplier * security.Value.QuoteCurrency.ConversionRate) sectorAbsoluteHoldingsValue += absoluteHoldingsValue # If the ratio between the sector absolute holdings value and the maximum sector exposure value # exceeds the unity, it means we need to reduce each security of that sector by that ratio # Otherwise, it means that the sector exposure is below the maximum and there is nothing to do. ratio = float(sectorAbsoluteHoldingsValue) / maximumSectorExposureValue if ratio > 1: for symbol, quantity in quantities.items(): if quantity != 0: risk_targets.append(PortfolioTarget(symbol, float(quantity) / ratio)) return risk_targets def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' anyFundamentalData = any([ kvp.Value.Fundamentals is not None and kvp.Value.Fundamentals.HasFundamentalData for kvp in algorithm.ActiveSecurities ]) if not anyFundamentalData: raise Exception("MaximumSectorExposureRiskManagementModel.OnSecuritiesChanged: Please select a portfolio selection model that selects securities with fundamental data.")
from Execution.ImmediateExecutionModel import ImmediateExecutionModel from universe import LiquidUniverseSelection from Alpha8 import Donchian8 from Risk.CompositeRiskManagementModel import CompositeRiskManagementModel from RiskMaximumDrawdown import DrawdownStops from RiskSectorExposure import MaximumSectorExposureRiskManagementModel from RiskTrailingStop import TrailingStopRiskManagementModel from PortfolioConstruction import InsightWeightingPortfolioConstructionModel class UpgradedFluorescentYellowBat(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 12, 12) self.SetEndDate(2021, 1, 1) self.SetCash(100000) self.Settings.FreePortfolioValuePercentage = 0.50 #self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) #self.SetWarmup(60) self.SetBenchmark("SPY") self.UniverseSettings.Resolution = Resolution.Daily self.CustomUniverseSelectionModel = LiquidUniverseSelection(self) self.AddUniverse(self.CustomUniverseSelectionModel.SelectCoarse) self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel()) self.Settings.RebalancePortfolioOnInsightChanges = False; self.Settings.RebalancePortfolioOnSecurityChanges = False; self.SetExecution(ImmediateExecutionModel()) self.SetAlpha(Donchian8()) self.Settings.MinimumOrderMarginPortfolioPercentage = 0.01 self.SetRiskManagement(TrailingStopRiskManagementModel())
class Donchian8(AlphaModel): def __init__(self, lowerBand = 55, upperBand = 55, emaPeriod = 100, momPeriod = 21, resolution = Resolution.Daily): self.lowerBand = lowerBand self.upperBand = upperBand self.resolution = resolution self.emaPeriod = emaPeriod self.momPeriod = momPeriod self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand) self.symbolData = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{},{},{})'.format(self.__class__.__name__, lowerBand, upperBand, emaPeriod, momPeriod, resolutionString) def Update(self, algorithm, data): insights = [] for key, sd in self.symbolData.items(): if sd.donchian.IsReady and \ sd.donchianWindow.IsReady and \ sd._donchian["UpperBand"].IsReady and \ sd._donchian["LowerBand"].IsReady and \ sd.ema.IsReady and \ sd.mom.IsReady and\ sd.momWindow.IsReady: if algorithm.Portfolio[key].Invested : continue if sd._donchian["UpperBand"][1] < sd.Security.Close and \ sd.Security.Close > sd.ema.Current.Value and \ sd.momWindow[1] < sd.momWindow[0]: insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Up,None, None, None, 0.01)) if sd._donchian["LowerBand"][1] > sd.Security.Close and \ sd.Security.Close < sd.ema.Current.Value and \ sd.momWindow[1] > sd.momWindow[0]: insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Down,None, None, None, 0.01)) return insights def OnSecuritiesChanged(self, algorithm, changes): for added in changes.AddedSecurities: self.symbolData[added.Symbol] = SymbolData(algorithm, added, self.upperBand, self.lowerBand, self.emaPeriod, self.momPeriod, self.resolution) for removed in changes.RemovedSecurities: data = self.symbolData.pop(removed.Symbol, None) if data is not None: algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator) algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.ConsolidatorEMA) algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.ConsolidatorMOM) class SymbolData: def __init__(self, algorithm, security, lowerBand, upperBand, emaPeriod, momPeriod, resolution): self.Security = security self.donchian = DonchianChannel(upperBand, lowerBand) self._donchian = {} self.Consolidator = algorithm.ResolveConsolidator(security.Symbol, resolution) algorithm.RegisterIndicator(security.Symbol, self.donchian, self.Consolidator) self.donchian.Updated += self.DonchianUpdated self.donchianWindow = RollingWindow[IndicatorDataPoint](2) self._donchian["UpperBand"] = RollingWindow[float](2) self._donchian["LowerBand"] = RollingWindow[float](2) self.ema = ExponentialMovingAverage(emaPeriod) self.ConsolidatorEMA = algorithm.ResolveConsolidator(security.Symbol, resolution) algorithm.RegisterIndicator(security.Symbol, self.ema, self.ConsolidatorEMA) self.mom = Momentum(momPeriod) self.ConsolidatorMOM = algorithm.ResolveConsolidator(security.Symbol, resolution) algorithm.RegisterIndicator(security.Symbol, self.mom, self.ConsolidatorMOM) self.mom.Updated += self.MOMUpdated self.momWindow = RollingWindow[IndicatorDataPoint](2) def DonchianUpdated(self, sender, updated): self.donchianWindow.Add(updated) self._donchian["UpperBand"].Add(self.donchian.UpperBand.Current.Value) self._donchian["LowerBand"].Add(self.donchian.LowerBand.Current.Value) def MOMUpdated(self, sender, updated): self.momWindow.Add(updated)
class Donchian5(AlphaModel): def __init__(self, period = 55, resolution = Resolution.Daily): self.period = period self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), period) self.symbolDataBySymbol = {} #self.donchianWindow = {} #self._donchian = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString) def Update(self, algorithm, data): insights = [] return insights def OnSecuritiesChanged(self, algorithm, changes): for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: #history = algorithm.History(added.Symbol, self.period, self.resolution) self.window = RollingWindow[TradeBar](2) symbolData = SymbolData(added) symbolData.donchian = algorithm.DCH(added.Symbol, self.period, self.period, self.resolution) self.donchianWindow = RollingWindow[IndicatorDataPoint](2) symbolData.donchian.Updated += self.DonchianUpdated symbolData._donchian["UpperBand"] = RollingWindow[float](2) symbolData._donchian["LowerBand"] = RollingWindow[float](2) self.symbolDataBySymbol[added.Symbol] = symbolData else: symbolData.donchian.Reset() self.donchianWindow.Reset() symbolData._donchian["UpperBand"].Reset() symbolData._donchian["UpperBand"].Reset() def DonchianUpdated(self, sender, updated): self.donchianWindow.Add(updated) symbolData._donchian["UpperBand"].Add(symbolData.donchian.UpperBand.Current.Value) symbolData._donchian["LowerBand"].Add(symbolData.donchian.LowerBand.Current.Value) class SymbolData: def __init__ (self, security): self.Security = security self.Symbol = security.Symbol self.donchian = None self._donchian = {}
class TrailingStopRiskManagementModel(RiskManagementModel): '''Provides an implementation of IRiskManagementModel that limits the maximum possible loss measured from the highest unrealized profit''' def __init__(self, maximumDrawdownPercent = 0.20): '''Initializes a new instance of the TrailingStopRiskManagementModel class Args: maximumDrawdownPercent: The maximum percentage drawdown allowed for algorithm portfolio compared with the highest unrealized profit, defaults to 5% drawdown''' self.maximumDrawdownPercent = -abs(maximumDrawdownPercent) self.trailingClose = dict() def ManageRisk(self, algorithm, targets): '''Manages the algorithm's risk at each time step Args: algorithm: The algorithm instance targets: The current portfolio targets to be assessed for risk''' riskAdjustedTargets = list() for kvp in algorithm.Securities: symbol = kvp.Key security = kvp.Value # Remove if not invested if not security.Invested: self.trailingClose.pop(symbol, None) continue # Add newly invested securities if symbol not in self.trailingClose: self.trailingClose[symbol] = security.Holdings.AveragePrice # Set to average holding cost continue # Check for new close high and update - set to tradebar close if self.trailingClose[symbol] < security.Close: self.trailingClose[symbol] = security.Close continue # Check for securities past the drawdown limit securityClose = self.trailingClose[symbol] drawdown = (security.Close / securityClose) - 1 if drawdown < self.maximumDrawdownPercent: # liquidate riskAdjustedTargets.append(PortfolioTarget(symbol, 0)) return riskAdjustedTargets # Your New Python File
class Donchian6(AlphaModel): def __init__(self, lowerBand = 55, upperBand = 55, emaPeriod = 100, resolution = Resolution.Daily): self.lowerBand = lowerBand self.upperBand = upperBand self.resolution = resolution self.emaPeriod = emaPeriod self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand) self.symbolData = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, lowerBand, upperBand, resolutionString) def Update(self, algorithm, data): insights = [] for key, sd in self.symbolData.items(): if sd.donchian.IsReady and \ sd.donchianWindow.IsReady and \ sd._donchian["UpperBand"].IsReady and \ sd._donchian["LowerBand"].IsReady: if sd._donchian["UpperBand"][1] < sd.Security.Close and \ sd.Security.Close > sd.ema.Current.Value: insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Up)) if sd._donchian["LowerBand"][1] > sd.Security.Close and \ sd.Security.Close < sd.ema.Current.Value: insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Down)) return insights def OnSecuritiesChanged(self, algorithm, changes): for added in changes.AddedSecurities: self.symbolData[added.Symbol] = SymbolData(algorithm, added, self.upperBand, self.lowerBand, self.emaPeriod, self.resolution) for removed in changes.RemovedSecurities: data = self.symbolData.pop(removed.Symbol, None) if data is not None: algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator) algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.ConsolidatorEMA) class SymbolData: def __init__(self, algorithm, security, lowerBand, upperBand, emaPeriod, resolution): self.Security = security self.donchian = DonchianChannel(upperBand, lowerBand) self._donchian = {} self.Consolidator = algorithm.ResolveConsolidator(security.Symbol, resolution) algorithm.RegisterIndicator(security.Symbol, self.donchian, self.Consolidator) self.donchian.Updated += self.DonchianUpdated self.donchianWindow = RollingWindow[IndicatorDataPoint](2) self._donchian["UpperBand"] = RollingWindow[float](2) self._donchian["LowerBand"] = RollingWindow[float](2) self.ema = ExponentialMovingAverage(emaPeriod) self.ConsolidatorEMA = algorithm.ResolveConsolidator(security.Symbol, resolution) algorithm.RegisterIndicator(security.Symbol, self.ema, self.ConsolidatorEMA) def DonchianUpdated(self, sender, updated): self.donchianWindow.Add(updated) self._donchian["UpperBand"].Add(self.donchian.UpperBand.Current.Value) self._donchian["LowerBand"].Add(self.donchian.LowerBand.Current.Value)
class Donchian7(AlphaModel): def __init__(self, lowerBand = 55, upperBand = 55, emaPeriod = 100, resolution = Resolution.Daily): self.lowerBand = lowerBand self.upperBand = upperBand self.resolution = resolution self.emaPeriod = emaPeriod self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand) self.symbolData = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, lowerBand, upperBand, resolutionString) def Update(self, algorithm, data): insights = [] for key, sd in self.symbolData.items(): if sd.donchian.IsReady and \ sd.donchianWindow.IsReady and \ sd._donchian["UpperBand"].IsReady and \ sd._donchian["LowerBand"].IsReady and \ sd.obv.IsReady and\ sd.obvWindow.IsReady: if sd._donchian["UpperBand"][1] < sd.Security.Close and \ sd.Security.Close > sd.ema.Current.Value and \ sd.obvWindow[1] < sd.obvWindow[0]: insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Up)) if sd._donchian["LowerBand"][1] > sd.Security.Close and \ sd.Security.Close < sd.ema.Current.Value and \ sd.obvWindow[1] > sd.obvWindow[0]: insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Down)) return insights def OnSecuritiesChanged(self, algorithm, changes): for added in changes.AddedSecurities: self.symbolData[added.Symbol] = SymbolData(algorithm, added, self.upperBand, self.lowerBand, self.emaPeriod, self.resolution) for removed in changes.RemovedSecurities: data = self.symbolData.pop(removed.Symbol, None) if data is not None: algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator) algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.ConsolidatorEMA) algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.ConsolidatorOBV) class SymbolData: def __init__(self, algorithm, security, lowerBand, upperBand, emaPeriod, resolution): self.Security = security self.donchian = DonchianChannel(upperBand, lowerBand) self._donchian = {} self.Consolidator = algorithm.ResolveConsolidator(security.Symbol, resolution) algorithm.RegisterIndicator(security.Symbol, self.donchian, self.Consolidator) self.donchian.Updated += self.DonchianUpdated self.donchianWindow = RollingWindow[IndicatorDataPoint](2) self._donchian["UpperBand"] = RollingWindow[float](2) self._donchian["LowerBand"] = RollingWindow[float](2) self.ema = ExponentialMovingAverage(emaPeriod) self.ConsolidatorEMA = algorithm.ResolveConsolidator(security.Symbol, resolution) algorithm.RegisterIndicator(security.Symbol, self.ema, self.ConsolidatorEMA) self.obv = OnBalanceVolume() self.ConsolidatorOBV = algorithm.ResolveConsolidator(security.Symbol, resolution) algorithm.RegisterIndicator(security.Symbol, self.obv, self.ConsolidatorOBV) self.obv.Updated += self.OBVUpdated self.obvWindow = RollingWindow[IndicatorDataPoint](2) def DonchianUpdated(self, sender, updated): self.donchianWindow.Add(updated) self._donchian["UpperBand"].Add(self.donchian.UpperBand.Current.Value) self._donchian["LowerBand"].Add(self.donchian.LowerBand.Current.Value) def OBVUpdated(self, sender, updated): self.obvWindow.Add(updated) # Your New Python File
class Donchian4(AlphaModel): def __init__(self, period = 55, resolution = Resolution.Daily): self.period = period self.resolution = resolution self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period) self.symbolDataBySymbol = {} self.closeWindow = {} self.lowWindow = {} self.highWindow = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString) def Update(self, algorithm, data): insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if data.ContainsKey(symbol) and data[symbol] is not None: self.closeWindow[symbol].Add(data[symbol].Close) donchian = symbolData.Donchian #if donchian.IsReady: #pass #return insights def OnSecuritiesChanged(self, algorithm, changes): symbols = [x.Symbol for x in changes.RemovedSecurities] if len(symbols) > 0: for subscription in algorithm.SubscriptionManager.Subscriptions: if subscription.Symbol in symbols: self.symbolDataBySymbol.pop(subscription.Symbol, None) subscription.Consolidators.Clear() #init data for added securities addedSymbols = [x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol] if len(addedSymbols) == 0: return history = algorithm.History(addedSymbols, self.period, self.resolution) for symbol in addedSymbols: donchian = algorithm.DCH(symbol, self.period, self.period, self.resolution) self.closeWindow[symbol] = RollingWindow[float](2) if not history.empty: ticker = SymbolCache.GetTicker(symbol) if ticker not in history.index.levels[0]: Log.Trace(f'Donchian4.OnSecuritiesChanged: {ticker} not found in history data frame.') continue for tuple in history.loc[ticker].itertuples(): tradeBar = TradeBar(bar.Index[1], bar.Index[0], bar.open, bar.high, bar.low, bar.close, bar.volume, timedelta(1)) donchian.Update(tradeBar) self.symbolDataBySymbol[symbol] = SymbolData(symbol, donchian) class SymbolData: def __init__(self, symbol, donchian): self.Symbol = symbol self.Donchian = donchian