Overall Statistics |
Total Trades 2651 Average Win 0.46% Average Loss -0.53% Compounding Annual Return 40.135% Drawdown 64.000% Expectancy 0.198 Net Profit 244.762% Sharpe Ratio 0.914 Probabilistic Sharpe Ratio 30.473% Loss Rate 36% Win Rate 64% Profit-Loss Ratio 0.87 Alpha 0.372 Beta -0.003 Annual Standard Deviation 0.406 Annual Variance 0.164 Information Ratio -0.235 Tracking Error 0.741 Treynor Ratio -124.289 Total Fees $28502.36 Estimated Strategy Capacity $83000.00 Lowest Capacity Asset LTCUSD E3 |
""" Crypto trading bot using maching learning Multiple crypto portfolio @version: 0.4 """ import clr clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework.Execution import * import pandas as pd pd.set_option('mode.use_inf_as_na', True) from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA from sklearn.metrics import get_scorer from sklearn.neural_network import MLPClassifier from sklearn.metrics import classification_report from sklearn.model_selection import RandomizedSearchCV from timeseriessplitgroups import TimeSeriesSplitGroups STEPS = [("pca", PCA()), ("mlp", MLPClassifier(n_iter_no_change=1, max_iter=100, solver="adam", early_stopping=True, warm_start=True, validation_fraction=0.2))] PARAMS = {"pca__n_components": [None, 0.9], "mlp__activation": ["logistic", "relu"], "mlp__alpha": [0.1, 0.01, 0.001, 0.0001, 0], "mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]} class MLCryptoAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 1) self.SetCash(100000) self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash) self.Settings.FreePortfolioValuePercentage = 0.05 self.lookbacks = [1, 7, 15, 30, 90] self.datapoints = 365 * 5 self.model = None self.threshold = 0.01 self.resolution = Resolution.Daily self.SetBenchmark(SecurityType.Crypto, "BTCUSD") tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "EOSUSD", "XMRUSD", "XRPUSD"] # NO BCH, ADA, DOT, ATOM [self.AddCrypto(t, self.resolution, Market.Bitfinex) for t in tickers] self.pos_size = 1.0 / len(tickers) self.Train(self.DateRules.WeekStart(), self.TimeRules.At(0, 0), self.train_model) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(0, 0), self.trade) def train_model(self): """ Train model with new data, model is created if missing """ if self.model is None: cv = TimeSeriesSplitGroups(n_splits=10) self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS, scoring="balanced_accuracy", cv=cv, n_iter=10, n_jobs=1) x, y = self.get_data(self.datapoints, include_y=True) if len(x) > 0 and len(y) > 0: groups = x.index.get_level_values("time") self.model.fit(x, y, groups=groups) self.Debug(classification_report(y, self.model.predict(x))) self.Plot("Model", "Bal. Accuracy", float(self.model.best_score_)) def trade(self): x = self.get_data(max(self.lookbacks) + 1, include_y=False) if len(x) > 0 and self.model is not None: symbols = x.index.get_level_values("symbol") pred = pd.Series(self.model.predict(x), index=symbols).sort_values() for symbol in pred.index: if pred[symbol]==1: self.SetHoldings(symbol, self.pos_size) elif pred[symbol]==-1: self.SetHoldings(symbol, 0) def get_data(self, datapoints=1, include_y=True): tickers = list(self.ActiveSecurities.Keys) data = self.History(tickers, datapoints, self.resolution) data["volatility"] = data["high"] - data["low"] data["spread"] = data["askclose"] - data["bidclose"] data = data[["close", "volatility", "volume", "spread"]] groups = data.groupby("symbol") features = [groups.pct_change(p) for p in self.lookbacks] # Momentum features += [data / groups.apply(lambda x: x.rolling(p).mean()) for p in self.lookbacks] # Feats normalized by their average features = pd.concat(features, join="inner", axis="columns").dropna() if include_y: target = groups["close"].pct_change(1).shift(-1) target = target.reindex_like(features).dropna() target = target.apply(lambda x: +1 if x>self.threshold else (-1 if x<-self.threshold else 0)) return features.loc[target.index], target else: return features
""" Crypto trading bot using maching learning Triple barrier target @version: 0.3 """ import clr clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework.Execution import * import pandas as pd pd.set_option('mode.use_inf_as_na', True) from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA from sklearn.metrics import get_scorer from sklearn.metrics import confusion_matrix from sklearn.neural_network import MLPClassifier from sklearn.metrics import classification_report from sklearn.model_selection import RandomizedSearchCV from timeseriessplitgroups import TimeSeriesSplitGroups STEPS = [("pca", PCA()), ("mlp", MLPClassifier(n_iter_no_change=1, max_iter=100, solver="adam", early_stopping=True, warm_start=True, validation_fraction=0.2))] PARAMS = {"pca__n_components": [None, 0.9], "mlp__activation": ["logistic", "relu"], "mlp__alpha": [0.1, 0.01, 0.001, 0.0001, 0], "mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]} # TODO: Add Trailing Stop https://www.quantconnect.com/docs/algorithm-reference/trading-and-orders#Trading-and-Orders-Updating-Orders class MLCryptoAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 1) self.SetCash(100000) self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash) self.Settings.FreePortfolioValuePercentage = 0.05 self.lookbacks = [1, 7, 15, 30, 91, 182, 365] self.datapoints = 365 * 5 self.model = None self.limit_margin = 0.0 self.stop_margin = 0.01 self.take_profit = 0.01 self.resolution = Resolution.Daily self.SetBenchmark(SecurityType.Crypto, "BTCUSD") tickers = ["BTCUSD"] [self.AddCrypto(t, self.resolution, Market.GDAX) for t in tickers] self.pos_size = 1.0 / (len(tickers) * (1+self.limit_margin)) # Accounting for available cash self.Train(self.DateRules.MonthStart(), self.TimeRules.At(0, 0), self.train_model) self.Schedule.On(self.DateRules.EveryDay(), #self.TimeRules.Every(timedelta(minutes=60)), self.TimeRules.At(0, 0), self.trade) def train_model(self): """ Train model with new data, model is created if missing """ if self.model is None: cv = TimeSeriesSplitGroups(n_splits=10) self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS, scoring="balanced_accuracy", cv=cv, n_iter=10, n_jobs=1) x, y = self.get_data(self.datapoints, include_y=True) if len(x) > 0 and len(y) > 0: groups = x.index.get_level_values("time") self.model.fit(x, y, groups=groups) self.Debug(confusion_matrix(y, self.model.predict(x))) self.Debug(classification_report(y, self.model.predict(x))) self.Plot("Model", "Bal. Accuracy", float(self.model.best_score_)) def trade(self): x = self.get_data(max(self.lookbacks) + 1, include_y=False) if len(x) > 0 and self.model is not None: y = pd.Series(self.model.predict(x), index=x.index) for symbol in self.ActiveSecurities.Keys: signal = y[str(symbol.ID)][0] if signal == 1: qty_order = self.CalculateOrderQuantity(symbol, self.pos_size) if qty_order > 0: price = self.Securities[symbol].Price limit = round(price * (1+self.limit_margin), 2) stop = round(price * (1-self.stop_margin), 2) self.StopLimitOrder(symbol, qty_order, stop, limit) elif signal == -1: self.SetHoldings(symbol, 0) def get_data(self, datapoints=1, include_y=True): tickers = list(self.ActiveSecurities.Keys) data = self.History(tickers, datapoints, self.resolution) data["volatility"] = data["high"] - data["low"] data["spread"] = data["askclose"] - data["bidclose"] data = data[["close", "volatility", "volume", "spread"]] groups = data.groupby("symbol") features = [groups.pct_change(p) for p in self.lookbacks] # Momentum features += [data / groups.apply(lambda x: x.rolling(p).mean()) for p in self.lookbacks] # Feats normalized by their average features = pd.concat(features, join="inner", axis="columns").dropna() if include_y: target = groups["close"].pct_change(1).shift(-1) target = target.reindex_like(features).dropna() target = target.apply(lambda x: +1 if x>self.take_profit else (-1 if x<-self.stop_margin else 0)) return features.loc[target.index], target else: return features
""" Crypto trading bot using maching learning New models and modified Kelly Criterion @version: 0.7 """ import clr clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework.Execution import * import pickle import pandas as pd pd.set_option('mode.use_inf_as_na', True) from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA from sklearn.neural_network import MLPClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import average_precision_score from timeseriescv import PurgedTimeSeriesSplitGroups from sklearn.linear_model import LogisticRegression from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split as ttsplit STEPS = [("pca", PCA(n_components=0.99)), ("model", LogisticRegression())] PARAMS = {"model": [MLPClassifier(n_iter_no_change=1, early_stopping=True), GradientBoostingClassifier(n_iter_no_change=1), LogisticRegression()]} class MLCryptoAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 1) self.SetCash(100000) self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash) self.resolution = Resolution.Daily self.SetBenchmark(SecurityType.Crypto, "BTCUSD") self.tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "EOSUSD", "XMRUSD", "XRPUSD"] # NO BCH, ADA, DOT, ATOM [self.AddCrypto(t, self.resolution, Market.Bitfinex) for t in self.tickers] self.lookbacks = [1, 7, 15, 31, 63] self.datapoints = 365 * 1 self.pos_size = 0.0 self.model = None self.model_key = "crypto_multi_day" if self.ObjectStore.ContainsKey(self.model_key): model_buffer = self.ObjectStore.ReadBytes(self.model_key) self.Log(f"Loading model {self.model_key}") self.model = pickle.loads(bytes(model_buffer)) self.Train(self.DateRules.WeekStart(), self.TimeRules.At(1, 0), self.train_model) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(0, 0), #self.TimeRules.Every(TimeSpan.FromHours(1)), self.trade) def train_model(self): """ Train model with new data, model is created if missing """ if self.model is None: cv = PurgedTimeSeriesSplitGroups(n_splits=10, purge_groups=max(self.lookbacks)) self.model = GridSearchCV(Pipeline(steps=STEPS), PARAMS, scoring="average_precision", cv=cv) x, y = self.get_data(self.datapoints, include_y=True) if len(x) > 0 and len(y) > 0: dates = x.index.get_level_values("time") train_dates, test_dates = ttsplit(dates.unique(), shuffle=False) x_train = x[dates.isin(train_dates)] y_train = y[dates.isin(train_dates)] groups = x_train.index.get_level_values("time") self.model.fit(x_train, (y_train > 0), groups=groups) self.Log(pd.DataFrame(self.model.cv_results_)) self.ObjectStore.SaveBytes(self.model_key, pickle.dumps(self.model)) x_test = x[dates.isin(test_dates)] y_test = y[dates.isin(test_dates)] self.calc_kelly(x_test, (y_test > 0), y_test) def calc_kelly(self, x, y, returns): """ Calculate info needed for Kelly position sizing """ win_rate = average_precision_score(y, self.model.predict(x)) avg_win = returns[returns>0].mean() avg_loss = -returns[returns<0].mean() self.pos_size = min(max(win_rate/avg_loss-(1-win_rate)/avg_win, 0), 1) self.Plot("Model", "Win Rate", win_rate) self.Plot("Model", "Win Loss Ratio", avg_win/avg_loss) self.Plot("Model", "Kelly Position", self.pos_size) self.Debug(f"WR:{win_rate:.3f} PS:{self.pos_size:.3f} " f"AW:{avg_win:.4f} AL:{avg_loss:.4f}") def trade(self): x = self.get_data(max(self.lookbacks) + 1, include_y=False) if len(x) > 0 and self.model is not None: symbols = x.index.get_level_values("symbol") pred = pd.Series(self.model.predict(x), index=symbols).sort_values() for symbol in pred.index: self.Log(f"Signal for {symbol}: {pred[symbol]}") if pred[symbol] == 1: self.SetHoldings(symbol, self.pos_size/len(self.tickers)) else: self.SetHoldings(symbol, 0) def get_data(self, datapoints=1, include_y=True): tickers = list(self.ActiveSecurities.Keys) data = self.History(tickers, datapoints, self.resolution) data["volatility"] = data["high"] - data["low"] data["spread"] = data["askclose"] - data["bidclose"] data = data[["close", "volatility", "volume", "spread"]] groups = data.groupby("symbol") features = [groups.pct_change(p) for p in self.lookbacks] # Momentum features += [data / groups.apply(lambda x: x.rolling(p).mean()) for p in self.lookbacks] # Feats normalized by their average features = pd.concat(features, join="inner", axis="columns").dropna() if include_y: target = groups["close"].pct_change(1).shift(-1) target = target.reindex_like(features).dropna() return features.loc[target.index], target else: return features
""" Crypto trading bot using maching learning Implementing Kelly criterion @version: 0.5 """ import clr clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework.Execution import * import pickle import pandas as pd pd.set_option('mode.use_inf_as_na', True) from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA from sklearn.neural_network import MLPClassifier from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.model_selection import RandomizedSearchCV from timeseriessplitgroups import TimeSeriesSplitGroups from sklearn.metrics import get_scorer, average_precision_score STEPS = [("pca", PCA()), ("mlp", MLPClassifier(n_iter_no_change=1, max_iter=100, solver="adam", early_stopping=True, warm_start=True, validation_fraction=0.2))] PARAMS = {"pca__n_components": [None, 0.9], "mlp__activation": ["logistic", "relu"], "mlp__alpha": [0.1, 0.01, 0.001, 0.0001, 0], "mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]} class MLCryptoAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 1, 1) self.SetCash(100000) self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash) self.Settings.FreePortfolioValuePercentage = 0.05 self.resolution = Resolution.Daily self.SetBenchmark(SecurityType.Crypto, "BTCUSD") #tickers = ["BTCUSD", "ETHUSD", "LTCUSD", # "EOSUSD", "XMRUSD", "XRPUSD"] # NO BCH, ADA, DOT, ATOM tickers = ["BTCUSD"] [self.AddCrypto(t, self.resolution, Market.Bitfinex) for t in tickers] self.lookbacks = [1, 7, 15, 30, 90] self.datapoints = 365 * 5 self.commissions = 0.005 self.model = None self.model_key = "crypto_btc" if self.ObjectStore.ContainsKey(self.model_key): model_buffer = self.ObjectStore.ReadBytes(self.model_key) self.Log(f"Loading model {self.model_key}") self.model = pickle.loads(bytes(model_buffer)) self.pos_size = 1.0/len(tickers) self.Train(self.DateRules.WeekStart(), self.TimeRules.At(0, 0), self.train_model) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(0, 0), self.trade) def train_model(self): """ Train model with new data, model is created if missing """ if self.model is None: cv = TimeSeriesSplitGroups(n_splits=10) self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS, scoring="average_precision", cv=cv, n_iter=10, n_jobs=1) x, y = self.get_data(self.datapoints, include_y=True) if len(x) > 0 and len(y) > 0: x_train, x_test, y_train, y_test = train_test_split(x, y, shuffle=False) groups = x_train.index.get_level_values("time") self.model.fit(x_train, (y_train>0), groups=groups) self.ObjectStore.SaveBytes(self.model_key, pickle.dumps(self.model)) self.calc_kelly(x_test, (y_test>0), y_test) self.Log(classification_report((y_test>0), self.model.predict(x_test))) self.Plot("Model", "Precision", float(self.model.best_score_)) def calc_kelly(self, x, y, returns): """ Calculate info needed for Kelly position sizing """ y_pred = self.model.predict(x) win_rate = average_precision_score(y_pred, y) #self.Plot("Model", "Win Rate", float(win_rate)) avg_gain = returns[returns>0].mean()-self.commissions avg_loss = -(returns[returns<0].mean()-self.commissions) win_loss_ratio = avg_gain/avg_loss self.pos_size = max(win_rate-(1-win_rate)/win_loss_ratio, 0) symbols_nr = len(y.index.get_level_values("symbol").unique()) self.pos_size = min(self.pos_size, 1.0/symbols_nr) self.Log(f"Win Rate {win_rate} - Pos Size {self.pos_size}") #self.Plot("Model", "Kelly Size", float(self.pos_size)) def trade(self): x = self.get_data(max(self.lookbacks) + 1, include_y=False) if len(x) > 0 and self.model is not None: symbols = x.index.get_level_values("symbol") pred = pd.Series(self.model.predict(x), index=symbols).sort_values() for symbol in pred.index: self.Log(f"Signal for {symbol}: {pred[symbol]}") if pred[symbol]==1: self.SetHoldings(symbol, self.pos_size) elif pred[symbol]==-1: self.SetHoldings(symbol, 0) def get_data(self, datapoints=1, include_y=True): tickers = list(self.ActiveSecurities.Keys) data = self.History(tickers, datapoints, self.resolution) data["volatility"] = data["high"] - data["low"] data["spread"] = data["askclose"] - data["bidclose"] data = data[["close", "volatility", "volume", "spread"]] groups = data.groupby("symbol") features = [groups.pct_change(p) for p in self.lookbacks] # Momentum features += [data / groups.apply(lambda x: x.rolling(p).mean()) for p in self.lookbacks] # Feats normalized by their average features = pd.concat(features, join="inner", axis="columns").dropna() if include_y: target = groups["close"].pct_change(1).shift(-1) target = target.reindex_like(features).dropna() return features.loc[target.index], target else: return features
""" Crypto trading bot using maching learning Limit and Stop loss order @version: 0.2 """ import clr clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework.Execution import * import pandas as pd pd.set_option('mode.use_inf_as_na', True) from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA from sklearn.neural_network import MLPClassifier from sklearn.model_selection import RandomizedSearchCV from timeseriessplitgroups import TimeSeriesSplitGroups STEPS = [("pca", PCA()), ("mlp", MLPClassifier(n_iter_no_change=1, max_iter=100, solver="adam", early_stopping=True, warm_start=True, validation_fraction=0.2))] PARAMS = {"pca__n_components": [None, 0.9], "mlp__activation": ["logistic", "relu"], "mlp__alpha": [0.1, 0.01, 0.001, 0.0001, 0], "mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]} # TODO: Add Trailing Stop https://www.quantconnect.com/docs/algorithm-reference/trading-and-orders#Trading-and-Orders-Updating-Orders class MLCryptoAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 1) self.SetCash(100000) self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash) self.lookbacks = [1, 8, 24, 24*7, 24*30] self.datapoints = 365 * 24 self.model = None self.limit_margin = 0.01 self.stop_margin = 0.01 self.resolution = Resolution.Hour self.SetBenchmark(SecurityType.Crypto, "BTCUSD") tickers = ["BTCUSD"] [self.AddCrypto(t, self.resolution, Market.GDAX) for t in tickers] self.pos_size = 1.0 / (len(tickers) * (1+self.limit_margin)) # Accounting for available cash self.Train(self.DateRules.MonthStart(), self.TimeRules.At(0, 0), self.train_model) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(timedelta(minutes=60)), #self.TimeRules.At(1, 0), self.trade) def train_model(self): """ Train model with new data, model is created if missing """ if self.model is None: cv = TimeSeriesSplitGroups(n_splits=10) self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS, scoring="accuracy", cv=cv, n_iter=10, n_jobs=1) x, y = self.get_data(self.datapoints, include_y=True) if len(x) > 0 and len(y) > 0: groups = x.index.get_level_values("time") self.model.fit(x, y, groups=groups) self.Plot("Model", "Accuracy", float(self.model.best_score_)) def trade(self): self.Transactions.CancelOpenOrders() x = self.get_data(max(self.lookbacks) + 1, include_y=False) if len(x) > 0 and self.model is not None: y = pd.Series(self.model.predict_proba(x)[:, 1], index=x.index) to_buy = y[y >= 0.5].index.get_level_values("symbol") for symbol in self.ActiveSecurities.Keys: if str(symbol.ID) in to_buy: pos_size, side = self.pos_size, +1 else: pos_size, side = 0, -1 qty_order = self.CalculateOrderQuantity(symbol, pos_size) if qty_order != 0: price = self.Securities[symbol].Price limit = round(price * (1+side*self.limit_margin), 2) stop = round(price * (1-side*self.stop_margin), 2) self.StopLimitOrder(symbol, qty_order, stop, limit) def get_data(self, datapoints=1, include_y=True): tickers = list(self.ActiveSecurities.Keys) data = self.History(tickers, datapoints, self.resolution) data["volatility"] = data["high"] - data["low"] data["spread"] = data["askclose"] - data["bidclose"] data = data[["close", "volatility", "volume", "spread"]] groups = data.groupby("symbol") features = [groups.pct_change(p) for p in self.lookbacks] # Momentum features += [data / groups.apply(lambda x: x.rolling(p).mean()) for p in self.lookbacks] # Feats normalized by their average features = pd.concat(features, join="inner", axis="columns").dropna() if include_y: target = groups["close"].pct_change(1).shift(-1) target = target.reindex_like(features).dropna() return features.loc[target.index], (target > 0).astype("float") else: return features
""" Crypto trading bot using maching learning @version: 0.1 """ import clr clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * import pandas as pd pd.set_option('mode.use_inf_as_na', True) from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA from sklearn.neural_network import MLPClassifier from sklearn.model_selection import RandomizedSearchCV from timeseriessplitgroups import TimeSeriesSplitGroups STEPS = [("pca", PCA()), ("mlp", MLPClassifier(n_iter_no_change=1, max_iter=100, solver="adam", early_stopping=True, warm_start=True, validation_fraction=0.2))] PARAMS = {"pca__n_components": [None, 0.9], "mlp__activation": ["logistic", "relu"], "mlp__alpha": [0.1, 0.01, 0.001, 0.0001, 0], "mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]} class MLCryptoAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 1) self.SetCash(100000) self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash) self.lookbacks = [1, 2, 4, 8, 24, 24*7, 24*15, 24*30] self.datapoints = 24 * 365 self.model = None self.resolution = Resolution.Daily self.SetBenchmark(SecurityType.Crypto, "BTCUSD") tickers = ["BTCUSD"] [self.AddCrypto(ticker, self.resolution, Market.GDAX) for ticker in tickers] self.position_size = 1.0/len(tickers) self.Train(self.DateRules.MonthStart(), self.TimeRules.At(0, 0), self.train_model) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(timedelta(minutes=60)), #self.TimeRules.At(10,0,0), self.trade) def train_model(self): """ Train model with new data, model is created if missing """ if self.model is None: cv = TimeSeriesSplitGroups(n_splits=10) self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS, scoring="accuracy", cv=cv, n_iter=10, n_jobs=1) x, y = self.get_data(self.datapoints, include_y=True) if len(x)>0 and len(y)>0: groups = x.index.get_level_values("time") self.model.fit(x, y, groups=groups) self.Plot("Model", "Accuracy", float(self.model.best_score_)) self.Debug(f"{self.Time} Model {self.model.best_score_:.1%}") def trade(self): x = self.get_data(max(self.lookbacks) + 1, include_y=False) if len(x) > 0: y = pd.Series(self.model.predict_proba(x)[:, 1], index=x.index, name="Signal") to_buy = y[y >= 0.5].index.get_level_values("symbol") for symbol in self.ActiveSecurities.Keys: self.SetHoldings(symbol, self.position_size) if str(symbol.ID) in to_buy else self.Liquidate(symbol) def get_data(self, datapoints=1, include_y=True): tickers = list(self.ActiveSecurities.Keys) data = self.History(tickers, datapoints, self.resolution) data["volatility"] = data["high"] - data["low"] data["spread"] = data["askclose"] - data["bidclose"] data = data[["close", "volatility", "volume", "spread"]] groups = data.groupby("symbol") features = [groups.pct_change(p) for p in self.lookbacks] # Momentum features += [data/groups.apply(lambda x: x.rolling(p).mean()) for p in self.lookbacks] # Feats normalized by their average features = pd.concat(features, join="inner", axis="columns").dropna() if include_y: target = groups["close"].pct_change(1).shift(-1) target = target.reindex_like(features).dropna() return features.loc[target.index], (target > 0).astype("float") else: return features
""" Crypto trading bot using maching learning Using PurgedTimeSeriesSplitGroups @version: 0.6 """ import clr clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework.Execution import * import pickle import pandas as pd pd.set_option('mode.use_inf_as_na', True) from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA from sklearn.neural_network import MLPClassifier from sklearn.metrics import classification_report from sklearn.metrics import average_precision_score from sklearn.model_selection import train_test_split from timeseriescv import PurgedTimeSeriesSplitGroups from sklearn.model_selection import RandomizedSearchCV STEPS = [("pca", PCA()), ("mlp", MLPClassifier(n_iter_no_change=1, max_iter=1000, solver="adam", early_stopping=True, warm_start=True, validation_fraction=0.2))] PARAMS = {"pca__n_components": [None, 0.9], "mlp__alpha": [0.01, 0.001, 0], "mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]} class MLCryptoAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 1) self.SetCash(100000) self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash) self.Settings.FreePortfolioValuePercentage = 0.05 self.resolution = Resolution.Hour self.SetBenchmark(SecurityType.Crypto, "BTCUSD") tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "EOSUSD", "XMRUSD", "XRPUSD"] # NO BCH, ADA, DOT, ATOM [self.AddCrypto(t, self.resolution, Market.Bitfinex) for t in tickers] self.lookbacks = [1, 4, 8, 24, 24*7] self.datapoints = 365 * 24 #self.commissions = 0.005 self.pos_size = 1.0 / len(tickers) self.model = None self.model_key = "crypto_multi_hour" if self.ObjectStore.ContainsKey(self.model_key): model_buffer = self.ObjectStore.ReadBytes(self.model_key) self.Log(f"Loading model {self.model_key}") self.model = pickle.loads(bytes(model_buffer)) self.Train(self.DateRules.WeekStart(), self.TimeRules.At(0, 30), self.train_model) self.Schedule.On(self.DateRules.EveryDay(), #self.TimeRules.At(0, 0), self.TimeRules.Every(TimeSpan.FromHours(1)), self.trade) def train_model(self): """ Train model with new data, model is created if missing """ if self.model is None: cv = PurgedTimeSeriesSplitGroups(n_splits=10, purge_groups=max(self.lookbacks)) self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS, scoring="accuracy", cv=cv, n_iter=10, n_jobs=-1) x, y = self.get_data(self.datapoints, include_y=True) if len(x) > 0 and len(y) > 0: x_train, x_test, y_train, y_test = train_test_split(x, y, shuffle=False) groups = x_train.index.get_level_values("time") self.model.fit(x_train, (y_train>0), groups=groups) self.ObjectStore.SaveBytes(self.model_key, pickle.dumps(self.model)) self.calc_kelly(x_test, (y_test > 0), y_test) self.Log(classification_report((y_test > 0), self.model.predict(x_test))) def calc_kelly(self, x, y, returns): """ Calculate info needed for Kelly position sizing """ win_rate = self.model.best_score_ avg_gain = returns[returns>0].mean() avg_loss = -returns[returns<0].mean() win_loss_ratio = avg_gain/avg_loss kelly_pos = win_rate-(1-win_rate)/win_loss_ratio symbols_nr = len(y.index.get_level_values("symbol").unique()) self.pos_size = max(kelly_pos, 0)/symbols_nr self.Plot("Model", "Win Rate", float(win_rate)) self.Plot("Model", "Win Loss Ratio", float(win_loss_ratio)) self.Plot("Model", "Kelly Position", float(kelly_pos)) self.Debug(f"WR:{win_rate:.3f} WLR:{win_loss_ratio:.3f} PS:{self.pos_size:.3f}") def trade(self): x = self.get_data(max(self.lookbacks) + 1, include_y=False) if len(x) > 0 and self.model is not None: symbols = x.index.get_level_values("symbol") pred = pd.Series(self.model.predict(x), index=symbols).sort_values() for symbol in pred.index: self.Log(f"Signal for {symbol}: {pred[symbol]}") if pred[symbol] == 1: self.SetHoldings(symbol, self.pos_size) elif pred[symbol] == -1: self.SetHoldings(symbol, 0) def get_data(self, datapoints=1, include_y=True): tickers = list(self.ActiveSecurities.Keys) data = self.History(tickers, datapoints, self.resolution) data["volatility"] = data["high"] - data["low"] data["spread"] = data["askclose"] - data["bidclose"] data = data[["close", "volatility", "volume", "spread"]] groups = data.groupby("symbol") features = [groups.pct_change(p) for p in self.lookbacks] # Momentum features += [data / groups.apply(lambda x: x.rolling(p).mean()) for p in self.lookbacks] # Feats normalized by their average features = pd.concat(features, join="inner", axis="columns").dropna() if include_y: target = groups["close"].pct_change(1).shift(-1) target = target.reindex_like(features).dropna() return features.loc[target.index], target else: return features