Overall Statistics |
Total Trades 20 Average Win 17.71% Average Loss -5.05% Compounding Annual Return 9.426% Drawdown 43.600% Expectancy 2.157 Net Profit 163.253% Sharpe Ratio 0.546 Loss Rate 30% Win Rate 70% Profit-Loss Ratio 3.51 Alpha 0.088 Beta -0.041 Annual Standard Deviation 0.158 Annual Variance 0.025 Information Ratio 0.12 Tracking Error 0.245 Treynor Ratio -2.115 Total Fees $165.80 |
namespace QuantConnect { /* * QuantConnect University: Full Basic Template: * * The underlying QCAlgorithm class is full of helper methods which enable you to use QuantConnect. * We have explained some of these here, but the full algorithm can be found at: * https://github.com/QuantConnect/QCAlgorithm/blob/master/QuantConnect.Algorithm/QCAlgorithm.cs */ public class SellinMay : QCAlgorithm { //string symbol = "RTH"; string symbol = "XRT"; int quantity = 0; public override void Initialize() { SetStartDate(2006, 1, 1); SetEndDate(DateTime.Now.Date.AddDays(-1)); SetCash(25000); AddSecurity(SecurityType.Equity, symbol, Resolution.Minute, true, 4, false); } //Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol. public void OnData(TradeBars data) { if(Time.ToString("MMM") == "May"){ if (Portfolio.HoldStock) { Order(symbol, -Portfolio[symbol].Quantity); Debug("Sell in May: Flat " + Time.ToShortDateString() + " Quantity: -" + Portfolio[symbol].Quantity); } } else if (Time.ToString("MMM") == "Nov"){ if (!Portfolio.HoldStock) { quantity = (int)(Portfolio.Cash / data[symbol].Close); Order(symbol, quantity); Debug("Sell in May: Long " + Time.ToShortDateString() + " Quantity: -" + quantity); } } } } }