Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
class HorizontalResistanceAutosequencers(QCAlgorithm): def Initialize(self): #Set start/end dates and cash self.SetStartDate(2018, 12, 18) self.SetEndDate(2019, 10, 19) self.SetCash(1000000) equity = self.AddEquity("JNJ", Resolution.Daily, leverage=1.0) self.syl = equity.Symbol #Set Brokerage Model self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Cash) #Add Securities from symbols and set data normalization mode to raw self.Securities[self.syl].SetDataNormalizationMode(DataNormalizationMode.Raw) #set variables for setsignal self.open = [] self.close = [] self.high = [] self.low = [] self.volume = [] self.time = [] self.Schedule.On(self.DateRules.EveryDay(self.syl),self.TimeRules.AfterMarketOpen(self.syl,0),Action(self.SetSignal)) def SetSignal(self): history = self.History(1, Resolution.Daily) for slice in history: bar = slice[self.syl] self.open.append(bar.Open) self.close.append(bar.Close) self.high.append(bar.High) self.low.append(bar.Low) self.volume.append(bar.Volume) self.time.append(bar.Time) self.Debug("{0}: {1}: {2}: {3}: {4}: {5}".format(self.open[-1], self.close[-1], self.high[-1], self.low[-1], self.volume[-1], self.time[-1])) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # if not self.Portfolio.Invested: # self.SetHoldings("SPY", 1)