Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 45.040% Drawdown 10.000% Expectancy 0 Net Profit 4.326% Sharpe Ratio 1.652 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.827 Beta 62.691 Annual Standard Deviation 0.24 Annual Variance 0.057 Information Ratio 1.572 Tracking Error 0.239 Treynor Ratio 0.006 Total Fees $30.42 |
import numpy as np import pandas as pd class ForexIndicator(QCAlgorithm): def Initialize(self): self.SetStartDate(2018,2,13) # If you don't set the end dates, you will get the latest date #self.SetEndDate(2018,1,20) self.SetCash(1000000) self.aapl = self.AddEquity("AAPL", Resolution.Minute) IndicatorPlot = Chart("Trade Plot") self.AddEquity("SPY", Resolution.Minute) # Schedule the rebalance function (Once everyday at Market open) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 0), Action(self.rebalance)) def OnData(self,data): pass def rebalance(self): price = self.Securities['AAPL'].Price if price <= 0: return self.Plot("Trade Plot", "Price", price) if not self.Securities["AAPL"].Invested: self.SetHoldings("AAPL", 1.0)