Overall Statistics |
Total Trades 2400 Average Win 0.55% Average Loss -0.45% Compounding Annual Return 18.120% Drawdown 21.400% Expectancy 0.317 Net Profit 436.503% Sharpe Ratio 1.027 Loss Rate 41% Win Rate 59% Profit-Loss Ratio 1.22 Alpha 0.042 Beta 0.929 Annual Standard Deviation 0.171 Annual Variance 0.029 Information Ratio 0.305 Tracking Error 0.105 Treynor Ratio 0.189 Total Fees $6579.31 |
import math import numpy as np import pandas as pd import statsmodels.api as sm from datetime import date, datetime, timedelta from scipy import stats class ExpectedIdiosyncraticSkewness(QCAlgorithm): '''Step 1. Calculating Fama-French daily regression residuals Step 2. Using daily residuals to calculate historical monthly moments Step 3. Run regression of historical monthly moments to estimate regression coefficients Step 4. Using historical monthly moments and estimated coefficients to calculate expected skewness Step 5. Sorting symbols by skewness and long the ones with lowest skewness Note: Fama-French factors daily data are only available up to 06/30/2019. So, backtest is implemented up to end of June, 2019. And, live trading is not feasible for current version. Reference: [1] "Expected Idiosyncratic Skewness" by Boyer, Mitton and Vorkink, Rev Financ Stud, June 2009 URL: https://academic.oup.com/rfs/article-abstract/23/1/169/1578688?redirectedFrom=PDF [2] Fama-French official data: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html ''' def Initialize(self): self.SetStartDate(2009, 7, 1) # Set Start Date: Right after original paper published self.SetEndDate(2019, 7, 30) # Set End Date self.SetCash(100000) # Set Strategy Cash # Download Fama French factors data as a dataframe self.fama_french_factors_per_day = self._get_fama_french_factors() self.number_of_coarse_symbol = 200 # Set the number of coarse symbol to be further filtered by expected skewness self.bottom_percent = 0.05 # Set the bottom percent to long out of coarse symbols according to skewness ranking self.weights = {} # Dictionary to save desired weights with symbols as key self.nextRebalance = self.Time # Define next rebalance time self.UniverseSettings.Resolution = Resolution.Daily # Subscribe daily data for selected symbols in universe self.AddUniverse(self.CoarseSelectionAndSkewnessSorting, self.GetWeightsInFineSelection) def CoarseSelectionAndSkewnessSorting(self, coarse): '''Coarse selection to get an initial universe for the skewness sorting trade logic. Then, select the symbols to trade monthly based on skewness sorting. ''' # Before next rebalance time, keep the current universe unchanged if self.Time < self.nextRebalance: return Universe.Unchanged ### Run the coarse selection to narrow down the universe # Filter stocks by price and whether they have fundamental data in QC # Then, sort descendingly by daily dollar volume sorted_by_volume = sorted([ x for x in coarse if x.HasFundamentalData and x.Price > 5 ], key = lambda x: x.DollarVolume, reverse = True) high_volume_stocks = [ x.Symbol for x in sorted_by_volume[:self.number_of_coarse_symbol] ] ### Select symbols to trade based on expected skewness at each month end # Estimate expected idiosyncratic skewness and select the lowest 5% symbol_and_skew = self.CalculateExpectedSkewness(high_volume_stocks) symbol_and_skew = symbol_and_skew.loc[:math.ceil(self.number_of_coarse_symbol * self.bottom_percent)] # Return the symbols return [self.Symbol(x) for x in symbol_and_skew.symbol.values] def GetWeightsInFineSelection(self, fine): '''Get fine fundamental data and calculate portfolio weights based on market capitalization ''' # Calculate market cap as shares outstanding multiplied by stock price self.weights = { f.Symbol: f.EarningReports.BasicAverageShares.ThreeMonths * f.Price for f in fine } # Form value-weighted portfolio total_cap = sum(self.weights.values()) # Compute the weights and sort them descendingly to place bigger orders first self.weights = { k: v / total_cap for k, v in sorted(self.weights.items(), key=lambda kv: kv[1], reverse=True) } return [ x.Symbol for x in fine ] def OnSecuritiesChanged(self, changes): '''Liquidate symbols that are removed from the dynamic universe ''' for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol, 'Removed from universe') def OnData(self, data): '''Rebalance the porfolio once a month with weights based on market cap ''' # Before next rebalance, do nothing if self.Time < self.nextRebalance: return # Placing orders for symbol, weight in self.weights.items(): self.SetHoldings(symbol, weight) # Rebalance at the end of every month self.nextRebalance = Expiry.EndOfMonth(self.Time) def CalculateExpectedSkewness(self, universe): '''Calculate expected skewness using historical moments and estimated regression coefficients ''' ### Get predictors # Get historical returns for two months monthEnd_this = self.Time monthEnd_lag_1 = (self.Time - timedelta(days = 10)).replace(day = 1) monthEnd_lag_2 = (monthEnd_lag_1 - timedelta(days = 10)).replace(day = 1) history = self.History(universe, monthEnd_lag_2 - timedelta(days = 1), monthEnd_this, Resolution.Daily) history = history["close"].unstack(level = 0) daily_returns = (np.log(history) - np.log(history.shift(1)))[1:] # Merge Fama-French factors to daily returns based on dates available in return series daily_returns['time'] = daily_returns.index daily_returns = daily_returns.merge(self.fama_french_factors_per_day, left_on = 'time', right_on = 'time') daily_returns_this = daily_returns[daily_returns['time'] > monthEnd_lag_1] daily_returns_last = daily_returns[daily_returns['time'] <= monthEnd_lag_1] daily_returns_dict = {monthEnd_this: daily_returns_this, monthEnd_lag_1: daily_returns_last} # For each stock and each month, run fama-french time-series regression and calculate historical moments column_list = list(daily_returns.columns) predictor_list = [] for month, returns in daily_returns_dict.items(): for symbol in universe: if str(symbol) not in column_list: predictor_list.append([str(symbol), month, np.nan, np.nan]) continue Y = (returns[str(symbol)] - returns['RF']).values X = returns[['Mkt_RF', 'SMB', 'HML']].values X = sm.add_constant(X) results = sm.OLS(Y, X).fit() # Use daily residual to calculate monthly moments hist_skew, hist_vol = stats.skew(results.resid), stats.tstd(results.resid) predictor_list.append([str(symbol), month, hist_skew, hist_vol]) predictor = pd.DataFrame(predictor_list, columns = ['symbol', 'time', 'skew', 'vol']) ### Estimate coefficients by regressing current skewness on historical moments Y = predictor[predictor['time'] == monthEnd_this]['skew'].values X = predictor[predictor['time'] == monthEnd_lag_1][['skew', 'vol']].values X = sm.add_constant(X) results = sm.OLS(Y, X, missing = 'drop').fit() coef = results.params ### Calculate expected skewness predictor_t = predictor[predictor['time'] == monthEnd_this][['skew', 'vol']].values ones = np.ones([len(predictor_t), 1]) predictor_t = np.append(ones, predictor_t, 1) exp_skew = np.inner(predictor_t, coef) skew_df = predictor[predictor['time'] == monthEnd_this][['symbol']].reset_index(drop = True) skew_df.loc[:,'skew'] = exp_skew skew_df = skew_df.sort_values(by = ['skew']).reset_index(drop = True) return skew_df def _get_fama_french_factors(self): '''Download fama-french factors data from Github repo and read it as a DataFrame. Data is originally from Kenneth French's official homepage. I unzip the data folder and upload to Github repo. ''' content = self.Download("https://raw.githubusercontent.com/QuantConnect/Tutorials/master/04%20Strategy%20Library/354%20Expected%20Idiosyncratic%20Skewness/F-F_Research_Data_Factors_daily.CSV") # Drop the first 5 and last 2 lines which are not data that we need data = content.splitlines() data = [x.split(',') for x in data[5:-2]] df = pd.DataFrame(data, columns = ['time', 'Mkt_RF', 'SMB', 'HML', 'RF'], dtype=np.float64) # Add one day to match Lean behavior: daily data is timestamped at UTC 00:00 the next day from the actual day that produced the data df.time = pd.to_datetime(df.time, format='%Y%m%d') + timedelta(1) return df.set_index('time')