Overall Statistics |
Total Trades 166 Average Win 3.70% Average Loss -1.27% Compounding Annual Return 18.765% Drawdown 16.100% Expectancy 1.633 Net Profit 416.484% Sharpe Ratio 1.514 Probabilistic Sharpe Ratio 87.579% Loss Rate 33% Win Rate 67% Profit-Loss Ratio 2.93 Alpha 0.168 Beta 0.174 Annual Standard Deviation 0.131 Annual Variance 0.017 Information Ratio 0.121 Tracking Error 0.186 Treynor Ratio 1.141 Total Fees $166.40 Estimated Strategy Capacity $9100000.00 Lowest Capacity Asset IEF SGNKIKYGE9NP |
""" Based on 'In & Out' strategy by Peter Guenther 10-04-2020 expanded/inspired by Tentor Testivis, Dan Whitnable (Quantopian), Vladimir, and Thomas Chang. https://www.quantopian.com/posts/new-strategy-in-and-out """ # Import packages import numpy as np import pandas as pd import scipy as sc class InOut(QCAlgorithm): def Initialize(self): self.first_loop = True self.is_invested = False self.SetStartDate(2012, 1, 1) # Set Start Date self.SetCash(10000) # Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Daily res = Resolution.Hour # stock selection self.STKSEL = self.AddEquity('QQQ', res).Symbol # Feed-in constants self.INI_WAIT_DAYS = 15 # out for 3 trading weeks self.MRKT = self.AddEquity('SPY', res).Symbol self.TLT = self.AddEquity('TLT', res).Symbol # Treasury Bond ETF (20 yrs) self.IEF = self.AddEquity('IEF', res).Symbol # Treasury Bond ETF (7-10 yrs) # Market and list of signals based on ETFs self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials) self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals) self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res) self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield) self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD) - Dolar Index self.GOLD = self.AddEquity('GLD', res).Symbol # gold self.SLVA = self.AddEquity('SLV', res).Symbol # VS silver self.UTIL = self.AddEquity('XLU', res).Symbol # utilities self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven (CHF) self.RICU = self.AddEquity('FXA', res).Symbol # risk currency (AUD) self.INDU = self.PRDC # vs industrials self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU] self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX] # 'In' and 'out' holdings incl. weights # When "In the market" hold the QQQ ETF self.HLD_IN = {self.STKSEL: 1.0} # When "Out of the Market", hold treasury bonds self.HLD_OUT = {self.TLT: .5, self.IEF: .5} # Initialize variables ## 'In'/'out' indicator self.be_in = 1 ## Day count variables self.dcount = 0 # count of total days since start self.outday = 0 # dcount when self.be_in=0 ## Flexi wait days self.WDadjvar = self.INI_WAIT_DAYS self.Schedule.On( self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 120), self.rebalance_when_out_of_the_market ) self.Schedule.On( self.DateRules.WeekEnd(), self.TimeRules.AfterMarketOpen('SPY', 120), self.rebalance_when_in_the_market ) def rebalance_when_out_of_the_market(self): if self.first_loop: self.base_portfolio = self.Portfolio.TotalPortfolioValue self.base_spy = self.ActiveSecurities[self.MRKT].Price self.base_qqq = self.ActiveSecurities[self.STKSEL].Price self.first_loop = False # Returns sample to detect extreme observations hist = self.History( self.SIGNALS + [self.MRKT] + self.FORPAIRS, 252, Resolution.Daily)['close'].unstack(level=0).dropna() # In the first version, it used the pct_chg of the assets in last 3 months # hist_shift = hist.rolling(66).apply(lambda x: x[:11].mean()) # To get rid of single noise, it was updated to consider the mean from 55-66 previous readings hist_shift = hist.apply(lambda x: (x.shift(65) + x.shift(64) + x.shift(63) + x.shift(62) + x.shift( 61) + x.shift(60) + x.shift(59) + x.shift(58) + x.shift(57) + x.shift(56) + x.shift(55)) / 11) returns_sample = (hist / hist_shift - 1) # Reverse code USDX: sort largest changes to bottom returns_sample[self.USDX] = returns_sample[self.USDX] * (-1) # For pairs, take returns differential, reverse coded # G_S = Gold vs Silver returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA]) # U_I = Utilities vs Industrial returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU]) # C_A = Swiss Franc vs Australian Dollar returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU]) self.pairlist = ['G_S', 'U_I', 'C_A'] # Extreme observations; statist. significance = 1% pctl_b = np.nanpercentile(returns_sample, 1, axis=0) extreme_b = returns_sample.iloc[-1] < pctl_b # Determine waitdays empirically via safe haven excess returns, 50% decay self.WDadjvar = int( max(0.50 * self.WDadjvar, self.INI_WAIT_DAYS * max(1, #returns_sample[self.GOLD].iloc[-1] / returns_sample[self.SLVA].iloc[-1], #returns_sample[self.UTIL].iloc[-1] / returns_sample[self.INDU].iloc[-1], #returns_sample[self.SHCU].iloc[-1] / returns_sample[self.RICU].iloc[-1] np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1), np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1), np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1) )) ) adjwaitdays = min(60, self.WDadjvar) # self.Debug('{}'.format(self.WDadjvar)) # Determine whether 'in' or 'out' of the market # If any return (3 months return) that is being tracked is bellow the 1% percentile should be off market if (extreme_b[self.SIGNALS + self.pairlist]).any(): self.be_in = False self.outday = self.dcount # if out of the market for adjwaitdays, then go in the market if self.dcount >= self.outday + adjwaitdays: self.be_in = True self.dcount += 1 self.Plot("In Out", "in_market", int(self.be_in)) self.Plot("In Out", "num_out_signals", extreme_b[self.SIGNALS + self.pairlist].sum()) self.Plot("Wait Days", "waitdays", adjwaitdays) self.Plot("My Control", "SPY", self.ActiveSecurities[self.MRKT].Price/self.base_spy) self.Plot("My Control", "QQQ", self.ActiveSecurities[self.STKSEL].Price/self.base_qqq) self.Plot("My Control", "Portfolio", self.Portfolio.TotalPortfolioValue/self.base_portfolio) def rebalance_when_in_the_market(self): # Swap to 'in' assets if applicable if self.be_in and self.is_invested != "in": # Close 'Out' holdings for asset, weight in self.HLD_OUT.items(): self.SetHoldings(asset, 0) for asset, weight in self.HLD_IN.items(): self.SetHoldings(asset, weight) self.is_invested = "in" # Swap to 'out' assets if applicable if not self.be_in and self.is_invested != "out": # Close 'In' holdings for asset, weight in self.HLD_IN.items(): self.SetHoldings(asset, 0) for asset, weight in self.HLD_OUT.items(): self.SetHoldings(asset, weight) self.is_invested = "out"