Overall Statistics |
Total Orders 1153 Average Win 1.41% Average Loss -0.33% Compounding Annual Return 1111.463% Drawdown 36.900% Expectancy 1.357 Start Equity 3000 End Equity 25824.54 Net Profit 760.818% Sharpe Ratio 7.899 Sortino Ratio 16.747 Probabilistic Sharpe Ratio 98.200% Loss Rate 56% Win Rate 44% Profit-Loss Ratio 4.33 Alpha 0 Beta 0 Annual Standard Deviation 0.839 Annual Variance 0.703 Information Ratio 7.965 Tracking Error 0.839 Treynor Ratio 0 Total Fees €3544.47 Estimated Strategy Capacity €23000.00 Lowest Capacity Asset AWX RBSIMWGA33VP Portfolio Turnover 25.96% |
# region imports from AlgorithmImports import * # endregion def get_r_o_a_score(fine): '''Get the Profitability - Return of Asset sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Profitability - Return of Asset sub-score''' # Nearest ROA as current year data roa = fine.operation_ratios.ROA.three_months # 1 score if ROA datum exists and positive, else 0 score = 1 if roa and roa > 0 else 0 return score def get_operating_cash_flow_score(fine): '''Get the Profitability - Operating Cash Flow sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Profitability - Operating Cash Flow sub-score''' # Nearest Operating Cash Flow as current year data operating_cashflow = fine.financial_statements.cash_flow_statement.cash_flow_from_continuing_operating_activities.three_months # 1 score if operating cash flow datum exists and positive, else 0 score = 1 if operating_cashflow and operating_cashflow > 0 else 0 return score def get_r_o_a_change_score(fine): '''Get the Profitability - Change in Return of Assets sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Profitability - Change in Return of Assets sub-score''' # if current or previous year's ROA data does not exist, return 0 score roa = fine.operation_ratios.ROA if not roa.three_months or not roa.one_year: return 0 # 1 score if change in ROA positive, else 0 score score = 1 if roa.three_months > roa.one_year else 0 return score def get_accruals_score(fine): '''Get the Profitability - Accruals sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Profitability - Accruals sub-score''' # Nearest Operating Cash Flow, Total Assets, ROA as current year data operating_cashflow = fine.financial_statements.cash_flow_statement.cash_flow_from_continuing_operating_activities.three_months total_assets = fine.financial_statements.balance_sheet.total_assets.three_months roa = fine.operation_ratios.ROA.three_months # 1 score if operating cash flow, total assets and ROA exists, and operating cash flow / total assets > ROA, else 0 score = 1 if operating_cashflow and total_assets and roa and operating_cashflow / total_assets > roa else 0 return score def get_leverage_score(fine): '''Get the Leverage, Liquidity and Source of Funds - Change in Leverage sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Leverage, Liquidity and Source of Funds - Change in Leverage sub-score''' # if current or previous year's long term debt to equity ratio data does not exist, return 0 score long_term_debt_ratio = fine.operation_ratios.long_term_debt_equity_ratio if not long_term_debt_ratio.three_months or not long_term_debt_ratio.one_year: return 0 # 1 score if long term debt ratio is lower in the current year, else 0 score score = 1 if long_term_debt_ratio.three_months < long_term_debt_ratio.one_year else 0 return score def get_liquidity_score(fine): '''Get the Leverage, Liquidity and Source of Funds - Change in Liquidity sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Leverage, Liquidity and Source of Funds - Change in Liquidity sub-score''' # if current or previous year's current ratio data does not exist, return 0 score current_ratio = fine.operation_ratios.current_ratio if not current_ratio.three_months or not current_ratio.one_year: return 0 # 1 score if current ratio is higher in the current year, else 0 score score = 1 if current_ratio.three_months > current_ratio.one_year else 0 return score def get_share_issued_score(fine): '''Get the Leverage, Liquidity and Source of Funds - Change in Number of Shares sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Leverage, Liquidity and Source of Funds - Change in Number of Shares sub-score''' # if current or previous year's issued shares data does not exist, return 0 score shares_issued = fine.financial_statements.balance_sheet.share_issued if not shares_issued.three_months or not shares_issued.twelve_months: return 0 # 1 score if shares issued did not increase in the current year, else 0 score score = 1 if shares_issued.three_months <= shares_issued.twelve_months else 0 return score def get_gross_margin_score(fine): '''Get the Leverage, Liquidity and Source of Funds - Change in Gross Margin sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Leverage, Liquidity and Source of Funds - Change in Gross Margin sub-score''' # if current or previous year's gross margin data does not exist, return 0 score gross_margin = fine.operation_ratios.gross_margin if not gross_margin.three_months or not gross_margin.one_year: return 0 # 1 score if gross margin is higher in the current year, else 0 score score = 1 if gross_margin.three_months > gross_margin.one_year else 0 return score def get_asset_turnover_score(fine): '''Get the Leverage, Liquidity and Source of Funds - Change in Asset Turnover Ratio sub-score of Piotroski F-Score Arg: fine: Fine fundamental object of a stock Return: Leverage, Liquidity and Source of Funds - Change in Asset Turnover Ratio sub-score''' # if current or previous year's asset turnover data does not exist, return 0 score asset_turnover = fine.operation_ratios.assets_turnover if not asset_turnover.three_months or not asset_turnover.one_year: return 0 # 1 score if asset turnover is higher in the current year, else 0 score score = 1 if asset_turnover.three_months > asset_turnover.one_year else 0 return score
# region imports from AlgorithmImports import * from security_initializer import * from universe import FScoreUniverseSelectionModel, LimitSectorWeightingPortfolioConstructionModel # endregion class ValueInvesting(QCAlgorithm): def initSettings(self): self.set_account_currency("EUR") self.InitCash = 3000 # Initial Starting Cash self.set_start_date(2024, 1, 1) # self.set_end_date(2023, 4, 1) self.fPVP = 0.1 # FreePortfolioValuePercentage self.risk = 0.9 # set maximum Risk for whole portfolio self.rebalancefrequency = 2 # Rebalance Portfolio every X Days self.maxPercentPerSector = 1 # limit exposure per sector self.leverage = 1.9 self.maxPrice = self.get_parameter("maxPrice",3) # maximum price for Stock in Universe Selector self.minPrice = self.get_parameter("minPrice",1) self.maxStocks = 10000 # how many different stocks can be held at any time self.fscore_threshold = self.get_parameter("fscore_threshold", 7) # set the minimum F-Score a Stock must have def initialize(self): self.initSettings() self.StartCash = self.InitCash self.SetCash(self.InitCash) ### Parameters ### # The Piotroski F-Score threshold we would like to invest into stocks with F-Score >= of that fscore_threshold = self.fscore_threshold ### Reality Modeling ### # Interactive Broker Brokerage fees and margin self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN) # Custom security initializer self.set_security_initializer(CustomSecurityInitializer(self.brokerage_model, FuncSecuritySeeder(self.get_last_known_prices), DataNormalizationMode.Raw)) ### Universe Settings ### self.universe_settings.resolution = Resolution.Second ### #self.universe_settings.leverage = 8 # Our universe is selected by Piotroski's F-Score and the max price which a stock can be and how much stocks should be maximum in Portfolio self.add_universe_selection(FScoreUniverseSelectionModel(self, fscore_threshold, self.maxPrice, self.minPrice, self.maxStocks)) # Assume we want to just buy and hold the selected stocks, rebalance daily self.add_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(days=int(self.rebalancefrequency)))) # Avoid overconcentration of risk in related stocks in the same sector, we invest the same size in every sector self.set_portfolio_construction(LimitSectorWeightingPortfolioConstructionModel(timedelta(days=self.rebalancefrequency),self.maxPercentPerSector, self.leverage)) # set Risk Management self.add_risk_management(MaximumDrawdownPercentPortfolio(self.risk)) # set minimum Order Margin self.settings.SetMinimumOrderMargin=0.1 # set Free Portfolio Value in Percent (Money which shouldn't be used) #self.Settings.FreePortfolioValuePercentage = self.fPVP # set Execution Model self.set_execution(SpreadExecutionModel(0.009))
# region imports from AlgorithmImports import * # endregion class CustomSecurityInitializer(BrokerageModelSecurityInitializer): '''Our custom initializer that will set the data normalization mode. We sub-class the BrokerageModelSecurityInitializer so we can also take advantage of the default model/leverage setting behaviors''' def __init__(self, brokerage_model, security_seeder, data_normalization_mode): '''Initializes a new instance of the CustomSecurityInitializer class with the specified normalization mode brokerage_model -- The brokerage model used to get fill/fee/slippage/settlement models security_seeder -- The security seeder to be used data_normalization_mode -- The desired data normalization mode''' self.base = BrokerageModelSecurityInitializer(brokerage_model, security_seeder) self.data_normalization_mode = data_normalization_mode def initialize(self, security): '''Initializes the specified security by setting up the models security -- The security to be initialized seed_security -- True to seed the security, false otherwise''' # first call the default implementation self.base.initialize(security) # now apply our data normalization mode security.set_data_normalization_mode(self.data_normalization_mode) security.set_slippage_model(VolumeShareSlippageModel()) security.set_buying_power_model(CustomBuyingPowerModel()) #security.set_buying_power_model(SecurityMarginModel(3.8)) security.set_fill_model(ForwardDataOnlyFillModel()) class CustomBuyingPowerModel(BuyingPowerModel): def get_maximum_order_quantity_for_target_buying_power(self, parameters): quantity = super().get_maximum_order_quantity_for_target_buying_power(parameters).quantity return GetMaximumOrderQuantityResult(quantity) def has_sufficient_buying_power_for_order(self, parameters): return HasSufficientBuyingPowerForOrderResult(True) # Let's always return 0 as the maintenance margin so we avoid margin call orders def get_maintenance_margin(self, parameters): return MaintenanceMargin(0) # Override this as well because the base implementation calls GetMaintenanceMargin (overridden) # because in C# it wouldn't resolve the overridden Python method def get_reserved_buying_power_for_position(self, parameters): return parameters.result_in_account_currency(0) class ForwardDataOnlyFillModel(EquityFillModel): def fill(self, parameters: FillModelParameters): order_local_time = Extensions.convert_from_utc(parameters.order.time, parameters.security.exchange.time_zone) data = parameters.security.cache.get_data[QuoteBar]() if not data is None and order_local_time <= data.end_time: return super().fill(parameters) return Fill([])
from AlgorithmImports import * from f_score import * import math from scipy.stats import norm from datetime import timedelta class FScoreUniverseSelectionModel(FineFundamentalUniverseSelectionModel): def __init__(self, algorithm, fscore_threshold, max_price=10000, min_price=1, max_stocks=10000): super().__init__(self.select_coarse, self.select_fine) self.algorithm = algorithm self.fscore_threshold = fscore_threshold self.max_price = max_price self.min_price = min_price self.max_stocks = max_stocks self.algorithm = algorithm self.kept_stocks_counter = {} def select_coarse(self, coarse): # Nur Aktien mit fundamentalen Daten und Preis > 1 filtered = [x.Symbol for x in coarse if x.HasFundamentalData and x.Price > self.min_price and x.Price <= self.max_price and x.financial_statements.balance_sheet.net_tangible_assets.twelve_months > 0 and x.market_cap > 0] # filtered = [x.Symbol for x in filtered if x.financial_statements.balance_sheet.net_tangible_assets.twelve_months/x.market_cap >=1] return filtered def select_fine(self, fine): # Wir verwenden ein Dictionary, um den F-Score jeder Aktie zu speichern f_scores = {} f_scores_invested = {} fine = sorted(fine, key=lambda x: x.MarketCap, reverse=True) for f in fine: # Berechne den Piotroski F-Score der gegebenen Aktie if(self.get_piotroski_f_score(f) >= self.fscore_threshold): f_scores[f.symbol] = self.get_piotroski_f_score(f) # Filtere Aktien, die den F-Score-Schwellenwert überschreiten selected_stocks = [symbol for symbol, fscore in f_scores.items()][:self.max_stocks] return selected_stocks # Rückgabe der Liste mit Optionen def get_piotroski_f_score(self, fine): # initial F-Score as 0 fscore = 0 # Add up the sub-scores in different aspects fscore += get_r_o_a_score(fine) fscore += get_operating_cash_flow_score(fine) fscore += get_r_o_a_change_score(fine) fscore += get_accruals_score(fine) fscore += get_leverage_score(fine) fscore += get_liquidity_score(fine) fscore += get_share_issued_score(fine) fscore += get_gross_margin_score(fine) fscore += get_asset_turnover_score(fine) return fscore class LimitSectorWeightingPortfolioConstructionModel(EqualWeightingPortfolioConstructionModel): '''Provides an implementation of IPortfolioConstructionModel that generates percent targets based on the CompanyReference.industry_template_code. The target percent holdings of each sector is 1/S where S is the number of sectors and the target percent holdings of each security is 1/N where N is the number of securities of each sector. For insights of direction InsightDirection.UP, long targets are returned and for insights of direction InsightDirection.DOWN, short targets are returned. It will ignore Insight for symbols that have no CompanyReference.industry_template_code''' def __init__(self, rebalance = Resolution.DAILY, maxPercent = 1, leverage = 1): '''Initialize a new instance of InsightWeightingPortfolioConstructionModel Args: rebalance: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function. If None will be ignored. The function returns the next expected rebalance time for a given algorithm UTC DateTime. The function returns null if unknown, in which case the function will be called again in the next loop. Returning current time will trigger rebalance.''' super().__init__(rebalance) self.sector_code_by_symbol = dict() self.maxPercent = maxPercent self.leverage = leverage def should_create_target_for_insight(self, insight): '''Method that will determine if the portfolio construction model should create a target for this insight Args: insight: The insight to create a target for''' return insight.symbol in self.sector_code_by_symbol def determine_target_percent(self, active_insights): '''Will determine the target percent for each insight Args: active_insights: The active insights to generate a target for''' result = dict() insight_by_sector_code = dict() for insight in active_insights: if insight.direction == InsightDirection.FLAT: result[insight] = 0 continue sector_code = self.sector_code_by_symbol.get(insight.symbol) insights = insight_by_sector_code.pop(sector_code, list()) insights.append(insight) insight_by_sector_code[sector_code] = insights # give equal weighting to each sector sector_percent = 0 if len(insight_by_sector_code) == 0 else self.leverage / len(insight_by_sector_code) if self.leverage / len(insight_by_sector_code) < self.leverage*self.maxPercent else self.leverage*self.maxPercent for _, insights in insight_by_sector_code.items(): # give equal weighting to each security count = len(insights) percent = 0 if count == 0 else sector_percent / count for insight in insights: result[insight] = insight.direction * percent return result def on_securities_changed(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for security in changes.removed_securities: # Removes the symbol from the self.sector_code_by_symbol dictionary # since we cannot emit PortfolioTarget for removed securities self.sector_code_by_symbol.pop(security.symbol, None) for security in changes.added_securities: sector_code = self.get_sector_code(security) if sector_code: self.sector_code_by_symbol[security.symbol] = sector_code super().on_securities_changed(algorithm, changes) def get_sector_code(self, security): '''Gets the sector code Args: security: The security to create a sector code for Returns: The value of the sector code for the security Remarks: Other sectors can be defined using AssetClassification''' fundamentals = security.fundamentals company_reference = security.fundamentals.company_reference if fundamentals else None return company_reference.industry_template_code if company_reference else None