Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports from AlgorithmImports import * import time # endregion class FetchTopGappers(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 5, 11) # Set Start Date self.SetEndDate(2021, 5, 11) self.SetCash(100000) # Set Strategy Cash self.tanh = self.Symbol("TANH VZ4JMWEY6VS5") self.tbltu = self.Symbol("TBLTU WYKN02HPCNS5") self.AddEquity("SPY", resolution=Resolution.Minute, extendedMarketHours=True) # Add universe self.UniverseSettings.Resolution = Resolution.Minute self.UniverseSettings.ExtendedMarketHours = True self.UniverseSettings.FillForward = True self.AddUniverse(self.CoarseUniverseSelection) self.AddUniverseSelection(ScheduledUniverseSelectionModel( self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", -5), self.ScheduledSymbolSelect)) def CoarseUniverseSelection(self, coarse): for c in coarse: if c.Symbol in [self.tanh, self.tbltu]: self.Debug(f"{self.Time} - {c.Symbol} coarse Price: {c.Price} // coarse adjusted price: {c.AdjustedPrice}") return [self.tanh, self.tbltu] def ScheduledSymbolSelect(self, date): history = self.History( tickers=[self.tanh, self.tbltu], start=self.Time - timedelta(minutes=1), end=self.Time, resolution=Resolution.Minute, fillForward=True, extendedMarket=True, dataNormalizationMode=DataNormalizationMode.Adjusted, ) self.Debug(f"Minute data (adjusted): \n{history.to_string()}") history = self.History( tickers=[self.tanh, self.tbltu], start=self.Time - timedelta(minutes=1), end=self.Time, resolution=Resolution.Minute, fillForward=True, extendedMarket=True, dataNormalizationMode=DataNormalizationMode.Raw, ) self.Debug(f"Minute data (raw): \n{history.to_string()}") history = self.History( tickers=[self.tanh, self.tbltu], start=self.Time - timedelta(days=1), end=self.Time, resolution=Resolution.Daily, fillForward=True, extendedMarket=True, dataNormalizationMode=DataNormalizationMode.Adjusted, ) self.Debug(f"Daily data (adjusted): \n{history.to_string()}") history = self.History( tickers=[self.tanh, self.tbltu], start=self.Time - timedelta(days=1), end=self.Time, resolution=Resolution.Daily, fillForward=True, extendedMarket=True, dataNormalizationMode=DataNormalizationMode.Raw, ) self.Debug(f"Daily data (raw): \n{history.to_string()}") return []