I'm having a very hard time accessing SPX options using Quantconnect, and when they're accessed, they differ widely from other options databases. 

These results are from using Quantconnect's Jupyter Notebook, on the cloud (research.ipynb): 

Scenario (1) (Code and Output provided below), in summary: My attempt to retrieve SPX options data for January 1, 2021 to January 7, 2023. Result: The latest date with SPXW options is January 4, 2021.   [BTW, “SPXW” may seem weird to use, but for Quantconnect, you must identify SPX as the underlying first, and then the weekly's, otherwise the weekly's will not be found. I learned this from their support.]

Scenario (2) (Code and Output provided below): My attempt to retrieve SPX options for June 30, 2022: Result: There are 7072 contracts, and no historical options data available for this date. 

Scenario (3) (Code and Output provided below): My attempt to retrieve SPX options for January 4, 2021, which was supposed to be available: Result: There are 5667 contracts, and no historical options data available for this date. 

Here are thoughts from ChatGPT's latest model, o1-preview (not yet publicly available), on the code and results : 

[SPXW Options Data Availability

Index Options Data: QuantConnect's data coverage primarily includes options on equities (stock options) and ETFs, but it may have limited or no coverage for options on indexes like SPX or SPXW.

Data Provider Limitations: Providing historical data for index options like SPX and SPXW involves additional licensing and costs, which could limit its availability on QuantConnect.

Historical Data for SPX Options: As of now, QuantConnect does not provide historical options data for SPX or SPXW options. This limitation is due to the constraints in their data subscriptions and licensing agreements with data providers.]



============================================================
Scenario (1) (Code and Output below): 
Code: 
{
from datetime import datetime, timedelta

import pandas as pd


 

# Initialize QuantBook

qb = QuantBook()


 

# Define the date range to check

start_date = datetime(2021, 1, 1)

end_date = datetime(2023, 7, 1)

date_range = pd.date_range(start=start_date, end=end_date, freq='B')  # 'B' for business days


 

# Add the SPX index symbol

spx = qb.AddIndex("SPX", Resolution.Minute).Symbol


 

# Create the canonical option symbol for SPXW options

spxw = Symbol.CreateCanonicalOption(spx, Market.USA, "?SPXW")


 

# Initialize a list to collect dates with available data

dates_with_data = []


 

print("Checking data availability for SPXW options over the date range...")


 

for date in date_range:

    contracts = qb.OptionChainProvider.GetOptionContractList(spxw, date)

    if contracts:

        # Attempt to get historical data for one of the contracts

        sample_contract = contracts[0]

        history = qb.History(sample_contract, date, date + timedelta(days=1), Resolution.Daily)

        if not history.empty:

            print(f"Data available for SPXW options on {date.date()}")

            dates_with_data.append(date)

            # Break after finding the latest date with data

            break

    else:

        print(f"No contracts retrieved for {date.date()}")


 

if not dates_with_data:

    print("No dates with available SPXW options data were found in the specified range.")

else:

    latest_date_with_data = dates_with_data[0]

    print(f"\nLatest date with available SPXW options data: {latest_date_with_data.date()}")



}

Output: 
{
Checking data availability for SPXW options over the date range...
Data available for SPXW options on 2021-01-04

Latest date with available SPXW options data: 2021-01-04
}

============================================================
Scenario (2) (Code and Output): 
Code: 
{
from datetime import datetime, timedelta

import pandas as pd

import numpy as np

from scipy.stats import norm


 

# Initialize QuantBook

qb = QuantBook()


 

# Use the date with available data

analysis_date = datetime(2022, 6, 30)  # Adjust this date based on data availability


 

# Set the algorithm's time to the analysis date

qb.SetDateTime(analysis_date)


 

# Add the SPX index symbol

spx = qb.AddIndex("SPX", Resolution.Minute).Symbol


 

# Create the canonical option symbol for SPXW options

spxw = Symbol.CreateCanonicalOption(spx, Market.USA, "?SPXW")


 

# Get the list of option contracts for SPXW on the specified date

contracts = qb.OptionChainProvider.GetOptionContractList(spxw, analysis_date)


 

# Filter contracts that have expiration dates after analysis_date

contracts = [c for c in contracts if c.ID.Date.date() >= analysis_date.date()]


 

print(f"Total contracts retrieved: {len(contracts)}")


 

# Filter for calls with strike prices between 3490 and 4240

call_contracts = [

    c for c in contracts

    if c.ID.OptionRight == OptionRight.Call and 3490 <= c.ID.StrikePrice <= 4240

]


 

# Filter for puts with strike prices between 4030 and 4240

put_contracts = [

    c for c in contracts

    if c.ID.OptionRight == OptionRight.Put and 4030 <= c.ID.StrikePrice <= 4240

]


 

# Combine the filtered contracts

selected_contracts = call_contracts + put_contracts


 

# Verify data availability for each contract

available_contracts = []

for contract in selected_contracts:

    history = qb.History(contract, analysis_date, analysis_date + timedelta(days=1), Resolution.Daily)

    if not history.empty:

        available_contracts.append(contract)

    else:

        print(f"No historical data found for {contract.Value} on {analysis_date.date()}.")


 

selected_contracts = available_contracts


 

# If no contracts have data, exit

if not selected_contracts:

    print("No contracts with available data were found.")

else:

    # Add the selected contracts to the data feed

    for contract in selected_contracts:

        qb.AddOptionContract(contract, Resolution.Minute)


 

    # Get historical data for the selected contracts and underlying on the specified date

    start_time = analysis_date

    end_time = analysis_date + timedelta(days=1)


 

    # Get history for options

    history_options = qb.History(selected_contracts, start_time, end_time, Resolution.Daily)


 

    # Get history for underlying

    history_underlying = qb.History(spx, start_time, end_time, Resolution.Daily)


 

    # Get the underlying price

    if not history_underlying.empty:

        underlying_price = history_underlying['close'].iloc[-1]

    else:

        raise Exception("Underlying price data not found.")


 

    # Define functions to compute Greeks using Black-Scholes model

    def calculate_greeks(option_type, S, K, T, r, sigma):

        d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))

        d2 = d1 - sigma * np.sqrt(T)


 

        if option_type == 'Call':

            delta = norm.cdf(d1)

            theta = (- (S * sigma * norm.pdf(d1)) / (2 * np.sqrt(T))

                     - r * K * np.exp(-r * T) * norm.cdf(d2)) / 365

        elif option_type == 'Put':

            delta = norm.cdf(d1) - 1

            theta = (- (S * sigma * norm.pdf(d1)) / (2 * np.sqrt(T))

                     + r * K * np.exp(-r * T) * norm.cdf(-d2)) / 365

        else:

            delta = None

            theta = None


 

        gamma = norm.pdf(d1) / (S * sigma * np.sqrt(T))

        vega = S * norm.pdf(d1) * np.sqrt(T) / 100  # Vega per 1% change in volatility


 

        return delta, gamma, vega, theta


 

    # Initialize a list to collect the data

    data_list = []


 

    # Risk-free rate (annualized)

    risk_free_rate = 0.02  # Adjust this rate based on the analysis date


 

    for contract in selected_contracts:

        symbol_value = contract.Value

        if symbol_value in history_options.index.get_level_values(0):

            df_option = history_options.loc[symbol_value].reset_index()

        else:

            print(f"No data available for {symbol_value} on {analysis_date.date()}.")

            continue


 

        if not df_option.empty:

            last_data = df_option.iloc[-1]

            # Time to expiration in years

            T = (contract.ID.Date.date() - analysis_date.date()).days / 365.0

            if T <= 0:

                continue  # Skip expired options

            # Option price

            option_price = last_data['close']

            # Implied volatility

            implied_volatility = last_data['impliedvolatility'] if 'impliedvolatility' in last_data else None

            if implied_volatility is None or np.isnan(implied_volatility):

                implied_volatility = 0.2  # Assume 20% if not available; adjust as needed

            sigma = implied_volatility


 

            # Compute Greeks

            option_type = 'Call' if contract.ID.OptionRight == OptionRight.Call else 'Put'

            delta, gamma, vega, theta = calculate_greeks(

                option_type, underlying_price, contract.ID.StrikePrice, T, risk_free_rate, sigma)


 

            data_list.append({

                'Contract': symbol_value,

                'Strike': contract.ID.StrikePrice,

                'OptionRight': option_type,

                'Expiration': contract.ID.Date.date(),

                'Last Price': option_price,

                'Volume': last_data['volume'] if 'volume' in last_data else None,

                'Open Interest': last_data['openinterest'] if 'openinterest' in last_data else None,

                'Implied Volatility': sigma,

                'Delta': delta,

                'Gamma': gamma,

                'Vega': vega,

                'Theta': theta,

            })

        else:

            print(f"No data available for {symbol_value} on {analysis_date.date()}.")


 

    # Convert to DataFrame

    df_options = pd.DataFrame(data_list)


 

    # Check if DataFrame is empty before sorting

    if not df_options.empty:

        df_options = df_options.sort_values(by=['OptionRight', 'Strike'])

        print(df_options)

    else:

        print("No data available to display.")



}

Output:
{
Total contracts retrieved: 7072
No historical data found for SPX   220715C03490000 on 2022-06-30.
No historical data found for SPX   220819C03490000 on 2022-06-30.
No historical data found for SPX   220916C03490000 on 2022-06-30.
No historical data found for SPX   221021C03490000 on 2022-06-30.
No historical data found for SPX   221118C03490000 on 2022-06-30.
No historical data found for SPX   221216C03490000 on 2022-06-30.
No historical data found for SPX   220715C03495000 on 2022-06-30.
No historical data found for SPX   220819C03495000 on 2022-06-30.
No historical data found for SPX   220916C03495000 on 2022-06-30.
No historical data found for SPX   221021C03495000 on 2022-06-30.
No historical data found for SPX   220715C03500000 on 2022-06-30.
No historical data found for SPX   220819C03500000 on 2022-06-30.
No historical data found for SPX   220916C03500000 on 2022-06-30.
No historical data found for SPX   221021C03500000 on 2022-06-30.
No historical data found for SPX   221118C03500000 on 2022-06-30.
No historical data found for SPX   221216C03500000 on 2022-06-30.
No historical data found for SPX   230120C03500000 on 2022-06-30.
No historical data found for SPX   230217C03500000 on 2022-06-30.
No historical data found for SPX   230317C03500000 on 2022-06-30.
No historical data found for SPX   230421C03500000 on 2022-06-30.
No historical data found for SPX   230519C03500000 on 2022-06-30.
No historical data found for SPX   230616C03500000 on 2022-06-30.
No historical data found for SPX   230721C03500000 on 2022-06-30.
No historical data found for SPX   230915C03500000 on 2022-06-30.
...
No historical data found for SPX   220916P04240000 on 2022-06-30.
No historical data found for SPX   221021P04240000 on 2022-06-30.
No historical data found for SPX   221118P04240000 on 2022-06-30.
No contracts with available data were found.
}

============================================================
Scenario (3) (Code and Output below): 
Code:
{
from datetime import datetime, timedelta

import pandas as pd

import numpy as np

from scipy.stats import norm


 

# Initialize QuantBook

qb = QuantBook()


 

# Use the latest date with available data

analysis_date = datetime(2021, 1, 4)


 

# Set the algorithm's time to the analysis date

qb.SetDateTime(analysis_date)


 

# Add the SPX index symbol

spx = qb.AddIndex("SPX", Resolution.Minute).Symbol


 

# Create the canonical option symbol for SPXW options

spxw = Symbol.CreateCanonicalOption(spx, Market.USA, "?SPXW")


 

# Get the list of option contracts for SPXW on the specified date

contracts = qb.OptionChainProvider.GetOptionContractList(spxw, analysis_date)


 

# Filter contracts that have expiration dates after analysis_date

contracts = [c for c in contracts if c.ID.Date.date() >= analysis_date.date()]


 

print(f"Total contracts retrieved: {len(contracts)}")


 

# Filter for calls with strike prices between 3490 and 4240

call_contracts = [

    c for c in contracts

    if c.ID.OptionRight == OptionRight.Call and 3490 <= c.ID.StrikePrice <= 4240

]


 

# Filter for puts with strike prices between 4030 and 4240

put_contracts = [

    c for c in contracts

    if c.ID.OptionRight == OptionRight.Put and 4030 <= c.ID.StrikePrice <= 4240

]


 

# Combine the filtered contracts

selected_contracts = call_contracts + put_contracts


 

# Verify data availability for each contract

available_contracts = []

for contract in selected_contracts:

    history = qb.History(contract, analysis_date, analysis_date + timedelta(days=1), Resolution.Daily)

    if not history.empty:

        available_contracts.append(contract)

    else:

        print(f"No historical data found for {contract.Value} on {analysis_date.date()}.")


 

selected_contracts = available_contracts


 

# If no contracts have data, exit

if not selected_contracts:

    print("No contracts with available data were found.")

else:

    # Add the selected contracts to the data feed

    for contract in selected_contracts:

        qb.AddOptionContract(contract, Resolution.Minute)


 

    # Get historical data for the selected contracts and underlying on the specified date

    start_time = analysis_date

    end_time = analysis_date + timedelta(days=1)


 

    # Get history for options

    history_options = qb.History(selected_contracts, start_time, end_time, Resolution.Daily)


 

    # Get history for underlying

    history_underlying = qb.History(spx, start_time, end_time, Resolution.Daily)


 

    # Get the underlying price

    if not history_underlying.empty:

        underlying_price = history_underlying['close'].iloc[-1]

    else:

        raise Exception("Underlying price data not found.")


 

    # Define functions to compute Greeks using Black-Scholes model

    def calculate_greeks(option_type, S, K, T, r, sigma):

        d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))

        d2 = d1 - sigma * np.sqrt(T)


 

        if option_type == 'Call':

            delta = norm.cdf(d1)

            theta = (- (S * sigma * norm.pdf(d1)) / (2 * np.sqrt(T))

                     - r * K * np.exp(-r * T) * norm.cdf(d2)) / 365

        elif option_type == 'Put':

            delta = norm.cdf(d1) - 1

            theta = (- (S * sigma * norm.pdf(d1)) / (2 * np.sqrt(T))

                     + r * K * np.exp(-r * T) * norm.cdf(-d2)) / 365

        else:

            delta = None

            theta = None


 

        gamma = norm.pdf(d1) / (S * sigma * np.sqrt(T))

        vega = S * norm.pdf(d1) * np.sqrt(T) / 100  # Vega per 1% change in volatility


 

        return delta, gamma, vega, theta


 

    # Initialize a list to collect the data

    data_list = []


 

    # Risk-free rate (annualized)

    risk_free_rate = 0.01  # Adjust this rate based on the analysis date


 

    for contract in selected_contracts:

        symbol_value = contract.Value

        if symbol_value in history_options.index.get_level_values(0):

            df_option = history_options.loc[symbol_value].reset_index()

        else:

            print(f"No data available for {symbol_value} on {analysis_date.date()}.")

            continue


 

        if not df_option.empty:

            last_data = df_option.iloc[-1]

            # Time to expiration in years

            T = (contract.ID.Date.date() - analysis_date.date()).days / 365.0

            if T <= 0:

                continue  # Skip expired options

            # Option price

            option_price = last_data['close']

            # Implied volatility

            implied_volatility = last_data['impliedvolatility'] if 'impliedvolatility' in last_data else None

            if implied_volatility is None or np.isnan(implied_volatility):

                implied_volatility = 0.2  # Assume 20% if not available; adjust as needed

            sigma = implied_volatility


 

            # Compute Greeks

            option_type = 'Call' if contract.ID.OptionRight == OptionRight.Call else 'Put'

            delta, gamma, vega, theta = calculate_greeks(

                option_type, underlying_price, contract.ID.StrikePrice, T, risk_free_rate, sigma)


 

            data_list.append({

                'Contract': symbol_value,

                'Strike': contract.ID.StrikePrice,

                'OptionRight': option_type,

                'Expiration': contract.ID.Date.date(),

                'Last Price': option_price,

                'Volume': last_data['volume'] if 'volume' in last_data else None,

                'Open Interest': last_data['openinterest'] if 'openinterest' in last_data else None,

                'Implied Volatility': sigma,

                'Delta': delta,

                'Gamma': gamma,

                'Vega': vega,

                'Theta': theta,

            })

        else:

            print(f"No data available for {symbol_value} on {analysis_date.date()}.")


 

    # Convert to DataFrame

    df_options = pd.DataFrame(data_list)


 

    # Check if DataFrame is empty before sorting

    if not df_options.empty:

        df_options = df_options.sort_values(by=['OptionRight', 'Strike'])

        print(df_options)

    else:

        print("No data available to display.")




}

Output:
{
Total contracts retrieved: 5667
No historical data found for SPX   210115C03490000 on 2021-01-04.
No historical data found for SPX   210219C03490000 on 2021-01-04.
No historical data found for SPX   210319C03490000 on 2021-01-04.
No historical data found for SPX   210416C03490000 on 2021-01-04.
No historical data found for SPX   210521C03490000 on 2021-01-04.
No historical data found for SPX   210618C03490000 on 2021-01-04.
No historical data found for SPX   210115C03495000 on 2021-01-04.
No historical data found for SPX   210219C03495000 on 2021-01-04.
No historical data found for SPX   210319C03495000 on 2021-01-04.
No historical data found for SPX   210115C03500000 on 2021-01-04.
No historical data found for SPX   210219C03500000 on 2021-01-04.
No historical data found for SPX   210319C03500000 on 2021-01-04.
No historical data found for SPX   210416C03500000 on 2021-01-04.
No historical data found for SPX   210521C03500000 on 2021-01-04.
No historical data found for SPX   210618C03500000 on 2021-01-04.
No historical data found for SPX   210917C03500000 on 2021-01-04.
No historical data found for SPX   211217C03500000 on 2021-01-04.
No historical data found for SPX   220121C03500000 on 2021-01-04.
No historical data found for SPX   220318C03500000 on 2021-01-04.
No historical data found for SPX   220617C03500000 on 2021-01-04.
No historical data found for SPX   221216C03500000 on 2021-01-04.
No historical data found for SPX   231215C03500000 on 2021-01-04.
No historical data found for SPX   210115C03505000 on 2021-01-04.
No historical data found for SPX   210219C03505000 on 2021-01-04.
...
No historical data found for SPX   220617P04225000 on 2021-01-04.
No historical data found for SPX   221216P04225000 on 2021-01-04.
No historical data found for SPX   231215P04225000 on 2021-01-04.
No contracts with available data were found.

}