from AlgorithmImports import *
#from AlgorithmImports.Indicators import *
import joblib
class RandomForestAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1) # Set the start date
self.SetEndDate(2000, 1, 31)
self.SetCash(100000) # Set the initial cash balance
# Load the machine learning model
model_key = 'spy_randomforest_predictor'
if self.ObjectStore.ContainsKey(model_key):
file_name = self.ObjectStore.GetFilePath(model_key)
self.model = joblib.load(file_name)
else:
# Handle the case when the model is not found
self.Error(f"Model '{model_key}' not found.")
self.Quit() # You may want to exit the algorithm here
#self.SetBenchmark("SPY") # Set the benchmark
self.spy = self.AddEquity("SPY").Symbol # Add SPY data
# Add the VIX data using AddData
self.vix = self.AddData(CBOE, "VIX", Resolution.Daily).Symbol
# Add USTYCR data using AddData
self.syield10yr = self.AddData(USTreasuryYieldCurveRate, "USTYCR", Resolution.Daily).Symbol
# Initialize rolling windows
self.vix_window = RollingWindow[float](30)
self.spy_window = RollingWindow[float](30)
self.syield10yr_window = RollingWindow[float](30)
# Initialize indicators
self.mfi = MoneyFlowIndex(14)
self.macd = MovingAverageConvergenceDivergence(12, 26, 9, MovingAverageType.Wilders)
self.williams = WilliamsPercentR(14)
self.stochastic = Stochastic(14, 3, 3)
# Attach indicators to SPY data
self.RegisterIndicator(self.spy, self.mfi, Resolution.Daily)
self.RegisterIndicator(self.spy, self.macd, Resolution.Daily)
self.RegisterIndicator(self.spy, self.williams, Resolution.Daily)
self.RegisterIndicator(self.spy, self.stochastic, Resolution.Daily)
# Initialize a counter to keep track of warm-up period
#self.warm_up_counter = 0
self.SetWarmUp(30) # Set the warm-up period
def OnData(self, slice):
if slice.ContainsKey("VIX.CBOE") and slice.ContainsKey(self.spy) and slice.ContainsKey("USTYCR"):
# Access the data if it exists
vix_data = slice["VIX.CBOE"]
spy_data = slice[self.spy]
syield10yr_data = slice["USTYCR"]
# Update rolling windows with new data
self.vix_window.Add(vix_data.Close)
self.spy_window.Add(spy_data.Close)
self.syield10yr_window.Add(syield10yr_data.TenYear)
# Increment the warm-up counter
#self.warm_up_counter += 1
if self.IsWarmingUp:
return
else:
df = self.CalculateFeatures()
prediction = self.GetPrediction(df)
if prediction == "Up":
self.SetHoldings(self.spy, 1)
else:
self.SetHoldings(self.spy, 0)
#else:
# Data is not available, handle this case (e.g., log a message)
#self.Debug("Data not available for one or more symbols")
def CalculateFeatures(self):
# Calculate your features from the data and create a DataFrame
# Replace this with your specific feature calculation logic
# Ensure that the DataFrame has the required columns ('vix_lagged', 'return_shift', etc.)
# Example placeholder for feature calculation:
vix_lagged = self.vix_window[0] # Replace with actual calculation
return_shift = self.spy_window[0] # Replace with actual calculation
change_yield_rate_shift = self.syield10yr_window[0] # Replace with actual calculation
# Calculate MFI, MACD, Williams %R, and Stochastic Oscillator using indicators
mfi = self.mfi.Current.Value
macd = self.macd.Current.Value
williams = self.williams.Current.Value
stochastic = self.stochastic.Current.Value
# Create a DataFrame with the calculated features
df = pd.DataFrame({
'vix_lagged': vix_lagged,
'return_shift': return_shift,
'change_yield_rate_shift': change_yield_rate_shift,
'mfi': mfi,
'macd': macd,
'williams': williams,
'stochastic': stochastic
})
self.Debug(df.tail(1))
return df.tail(1) # Return the last row of the DataFrame
def GetPrediction(self, df):
# Ensure that you have enough data for prediction
if len(df) == 0:
return "NotEnoughData"
# Make the prediction using your machine learning model
prediction = self.model.predict(df)
if prediction == 1:
return "Up"
else:
return "Down"
+ Expand- Collapse
To unlock posting to the community forums please complete at least 30% of Boot Camp.
You can continue your Boot Camp training progress from the terminal. We hope to see you in the community soon!