Hello,

I am trying to use volume bars by implementing ClassicalRenkoConsolidator.

I am getting an error: 

Runtime Error: 'QuoteBar' object has no attribute 'Volume'
  at <lambda>
    self.equivolume_consolidator = ClassicRenkoConsolidator(int(volume_daily_mean / 10) in main.py: line 100

I don't understand where QuoteBars comes from.

Here is the code (can't attach code with error):

# region imports
from AlgorithmImports import *
# endregion

class WellDressedFluorescentYellowFly(QCAlgorithm):

    def Initialize(self):

        # params
        self.frequency = Resolution.Minute

        # set up
        self.SetStartDate(2020, 1, 1)
        self.SetEndDate(2020, 3, 1)
        self.SetCash(100000)
        self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
        
        # Add QC500 Universe
        equity = self.AddEquity("SPY", Resolution.Minute)
        self.spy = equity.Symbol
        self.Securities[self.spy].SetDataNormalizationMode(DataNormalizationMode.Raw)
        self.SetBenchmark(lambda dt: self.Securities[self.spy].Price)
        self.AddUniverse(self.CoarseSelectionFunction)
        self.UniverseSettings.Resolution = Resolution.Minute

        # init
        self.Data = {}
        self.excess_window = RollingWindow[float](10)
        self.day = -1

    def CoarseSelectionFunction(self, coarse):

        # rebalancing
        if self.day == self.Time.day:
            return Universe.Unchanged
        self.day = self.Time.day

        # filter n stocks with highest dollar volume
        filtered_coarse = [x for x in coarse if x.HasFundamentalData and x.AdjustedPrice > 5]
        selected = sorted(filtered_coarse, key=lambda x: x.DollarVolume, reverse=True)
            
        return [x.Symbol for x in selected[:5]]

    def OnSecuritiesChanged(self, changes):
        
        # added securities
        def DataDictInitialization():
            for security in changes.AddedSecurities:
                symbol = security.Symbol
                if symbol not in self.Data:
                    self.Data[symbol] = SelectionData(self, symbol)
        self.Train(DataDictInitialization)
                
        # removed securities
        for security in changes.RemovedSecurities:
            symbol = security.Symbol
            if symbol in self.Data:
                symbolData = self.Data.pop(symbol, None)

    def OnData(self, data):

        # if there are no bars data (only stok splits, dividends etc) than cont
        if self.spy not in data.Bars: return
        if not data.Bars.ContainsKey(self.spy): return
        if not data.ContainsKey(self.spy): return
       
        # calculate sums of above and below and their difference
        self.Debug(f"Dat keys {self.Data.keys()}")
        self.Debug(f"Data diff window {[list(self.Data[symbol].excess_diff_window) for symbol in self.Data.keys()]}")


class SelectionData(object):

    def __init__(self, algorithm, symbol):
        
        # set up
        self.algorithm = algorithm
        self.symbol = symbol
        
        # rolling windows
        self.close_window = RollingWindow[float](100)
        self.excess_diff_window = RollingWindow[float](10)
        self.daily_volume_window = RollingWindow[float](6)

        # consolidators
        self.daily_consolidator = self.algorithm.Consolidate(symbol, Resolution.Daily, self.DailyBarHandler)
        
        # warm up daily volume
        history = self.algorithm.History([self.symbol], 6 + 1, Resolution.Daily)
        if history.shape[0] == 0:
            self.algorithm.Log('DataFrame is empty!')
            return
        for tuple in history.loc[self.symbol].itertuples():
            self.daily_volume_window.Add(tuple.volume)

        # classical renko volume bar
        if self.daily_volume_window.IsReady:
            volume_window = list(self.daily_volume_window)
            volume_daily_mean = sum(volume_window) / len(volume_window)
            self.algorithm.Debug(f"Daily mean volume is {int(volume_daily_mean / 10)}.")
            self.equivolume_consolidator = ClassicRenkoConsolidator(int(volume_daily_mean / 10), selector = lambda data: data.Volume)
            self.equivolume_consolidator.DataConsolidated += self.OnDataConsolidated
            self.algorithm.SubscriptionManager.AddConsolidator(self.symbol, self.equivolume_consolidator)

        # warm up volume bars
        if self.daily_volume_window.IsReady:
            history = self.algorithm.History([symbol], 500, Resolution.Minute)
            if history.shape[0] == 0:
                self.algorithm.Log('DataFrame is empty!')
                return
            if 'volume' not in history.columns:
                self.algorithm.Log(f"No volume: {symbol}\n{history.to_string()}")
                return
            for tuple in history.loc[self.symbol].itertuples():
                tradebar = TradeBar(tuple.Index, self.symbol, tuple.open, tuple.high, tuple.low, tuple.close, tuple.volume)
                self.equivolume_consolidator.Update(tradebar)

    def DailyBarHandler(self, consolidated):
        if "Volume" is consolidated.values():
            self.Debug("No volume!")
            return
        self.daily_volume_window.Add(consolidated.Volume)

    def OnDataConsolidated(self, sender, data):
        self.close_window.Add(data.Close)
        if self.close_window.IsReady:
            pass

    # def update(self, price):
    #     self.close_window.Add(price)# Your New Python Fileimport numpy as np