Hello my beloved community!
I am extremely new to universes and am seeking some help!
I am hoping to create a universe that returns equities that:
- have an open price at least 1% higher than the previous days high
- has avg volume traded in the millions
I am so appreciative of all the hard workers on this platform. Thank you guys for taking the time to read this!
Best,
Jesse
Nico Xenox
Hey Jesse Fleming,
you could copy the screeners that were already made by other people and change the values. For example:
You can start here by trying to understand it and then change the values.
Hope it helps ;)
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Jesse Fleming
Okay yes this is very very useful my brother. One thing that pops into my mind is this:
This particular example is under a class named ‘Universe Selection’. I were to attempt to do something similar, do I have everything in one class, or is the universe selection one class, and then the entries and exits in another or how does that work?
In short, if I want universe selection, is it combined with the strategy class or must they be separate?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Nico Xenox
Jesse Fleming,
if you’re referring to the second class in the example, no, you don’t have to do it in two separate classes. It will make your life easier though because all symbols will have a different value in self.LastClose and self.Gapup.
If you want to do it all in one class you will have to work with dictionaries that have these values for each symbol.
Hope it helps ;)
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Shile Wen
Hi Zach,
The algorithm has many technical and stylistic issues, and since it seemed to be a popular algorithm, we've rewrote it to use the SymbolData pattern, replaced the History calls with RollingWindows, and fixed many stylistic issues. Please view the updated algorithm in the attached backtest.
Best,
Shile Wen
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Zach Oakes
Thanks ! It's very cool. It's like an MR take on Trend -- brilliant interpretation, and MUCH nicer than my translation.
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Mohamed Ajmal
How can we implement stoploss / reduce drawdown in this algorithm?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Varad Kabade
Hi Mohamed Ajmal,
In the last backtest attached by Shile he has implemented the stop-loss which is triggered every day after 10 minutes of market open:
Refer to the following code snippet.
Best,
Varad Kabade
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Andres Arizpe
This appears to be a very interesting algo.
Is there any documentation I might use to get a basic understanding of it?
Cheers,
Andres
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Varad Kabade
Hi Andres Arizpe,
The above algorithm consists of components like the scheduled events, rolling window, and standard python libraries like numpy and pandas. We recommend going through the following docs[1, 2], and regarding the libraries, please look for their homepage/documentation. Please feel free to ask any specific doubts about the above algorithm.
Best,
Varad Kabade
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
To unlock posting to the community forums please complete at least 30% of Boot Camp.
You can continue your Boot Camp training progress from the terminal. We hope to see you in the community soon!