Hi!

 

I'm following this example algo here to import external data : 

 

 

So I've simplified the original algo to just this code here:

  1. # QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
  2. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
  7. #
  8. # Unless required by applicable law or agreed to in writing, software
  9. # distributed under the License is distributed on an "AS IS" BASIS,
  10. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. # See the License for the specific language governing permissions and
  12. # limitations under the License.
  13. from AlgorithmImports import *
  14. ### <summary>
  15. ### Demonstration of using an external custom datasource. LEAN Engine is incredibly flexible and allows you to define your own data source.
  16. ### This includes any data source which has a TIME and VALUE. These are the *only* requirements. To demonstrate this we're loading in "Bitcoin" data.
  17. ### </summary>
  18. ### <meta name="tag" content="using data" />
  19. ### <meta name="tag" content="custom data" />
  20. ### <meta name="tag" content="crypto" />
  21. class CustomDataBitcoinAlgorithm(QCAlgorithm):
  22. def Initialize(self):
  23. self.SetStartDate(2011, 9, 13)
  24. self.SetEndDate(datetime.now().date() - timedelta(1))
  25. self.SetCash(100000)
  26. # Define the symbol and "type" of our generic data:
  27. self.AddData(Bitcoin, "BTC")
  28. def OnData(self, data):
  29. if not data.ContainsKey("BTC"): return
  30. close = data["BTC"].Close
  31. # If we don't have any weather "SHARES" -- invest"
  32. if not self.Portfolio.Invested:
  33. # Weather used as a tradable asset, like stocks, futures etc.
  34. # It's only OK to use SetHoldings with crypto when using custom data. When trading with built-in crypto data,
  35. # use the cashbook. Reference https://github.com/QuantConnect/Lean/blob/master/Algorithm.Python/BasicTemplateCryptoAlgorithm.py
  36. self.SetHoldings("BTC", 1)
  37. self.Debug("Buying BTC 'Shares': BTC: {0}".format(close))
  38. self.Debug("Time: {0} {1}".format(datetime.now(), close))
  39. class Bitcoin(PythonData):
  40. '''Custom Data Type: Bitcoin data from Quandl - http://www.quandl.com/help/api-for-bitcoin-data'''
  41. def GetSource(self, config, date, isLiveMode):
  42. if isLiveMode:
  43. return SubscriptionDataSource("https://www.bitstamp.net/api/ticker/", SubscriptionTransportMedium.Rest)
  44. #return "http://my-ftp-server.com/futures-data-" + date.ToString("Ymd") + ".zip"
  45. # OR simply return a fixed small data file. Large files will slow down your backtest
  46. return SubscriptionDataSource("https://www.dropbox.com/s/0m936vz86v9ez8u/forest%20example%20bitcoin%20added%201%20line.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
  47. def Reader(self, config, line, date, isLiveMode):
  48. coin = Bitcoin()
  49. coin.Symbol = config.Symbol
  50. # Example Line Format:
  51. # Date Open High Low Close Volume (BTC) Volume (Currency) Weighted Price
  52. # 2011-09-13 5.8 6.0 5.65 5.97 58.37138238, 346.0973893944 5.929230648356
  53. if not (line.strip() and line[0].isdigit()): return None
  54. try:
  55. data = line.split(',')
  56. # If value is zero, return None
  57. value = data[4]
  58. if value == 0: return None
  59. coin.Time = datetime.strptime(data[0], "%Y-%m-%d")
  60. coin.EndTime = coin.Time + timedelta(days=1)
  61. #coin.Value = value
  62. #coin["Open"] = float(data[1])
  63. #coin["High"] = float(data[2])
  64. #coin["Low"] = float(data[3])
  65. coin["Close"] = float(data[4])
  66. #coin["VolumeBTC"] = float(data[5])
  67. #coin["VolumeUSD"] = float(data[6])
  68. #coin["WeightedPrice"] = float(data[7])
  69. return coin
  70. except ValueError:
  71. # Do nothing, possible error in json decoding
  72. return
+ Expand

Author

Emiliano Fraticelli

August 2021